• Lambda-cyhalothrin;
  • piperonyl butoxide;
  • oxidative stress;
  • brain;
  • Oreochromis niloticus

The objective of this research was to investigate the neurotoxic effects of pyrethroid pesticide lambda-cyhalothrin by the modulation of cytochrome P450 with piperonyl butoxide in the brain of juvenile Oreochromis niloticus. The fish were exposed to 0.48 μg L−1 (1/6 of the 96-h LC50) lambda-cyhalothrin and 10 μg L−1 piperonyl butoxide for 96 h and 15 days. tGSH, GSSG, TBARS contents, GPx, GR, GST, and AChE enzymes activities were determined by spectrophotometrical methods and Hsp70 content was analyzed by ELISA technique. Lambda-cyhalothrin had no significant effect on the components of GSH redox system, lipid peroxidation and Hsp70 levels but inhibited AChE activity. In the presence of piperonyl butoxide, lambda-cyhalothrin caused increases in tGSH, GSSG, TBARS and Hsp70 contents, GST activity, and decrease in AChE activity. Present results showed that in the presence of piperonyl butoxide, lambda-cyhalothrin caused neurotoxic effects by increasing oxidative stress. Adaptation to its oxidative stress effects may be supplied by GSH-related antioxidant system. Piperonyl butoxide revealed neurotoxic effect of lambda-cyhalothrin. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1275–1282, 2014.