SEARCH

SEARCH BY CITATION

References

  • 1
    Breast Cancer Facts and Figures 2003–2004. American Cancer Society: Atlanta, Georgia, 2005.
  • 2
    Jackson VP, Bassett LW. Breast sonography. Breast Dis 1998; 10: 5566.
  • 3
    Rahbar G, Sie AC, Hansen GC, Prince JS, Melany ML, Reynolds HE, Jackson VP, Sayre JW, Bassett LW. Benign versus malignant solid breast masses: US differentiation. Radiology 1999; 213: 889894.
  • 4
    Gefen S, Tretiak OJ, Piccoli CW, Donohue KD, Petropulu AP, Shankar PM, Dumane VA, Huang L, Kutay MA, Genis V, Forsberg F, Reid JM, Goldberg BB. ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis. IEEE Trans Med Imaging 2003; 22: 170177.
  • 5
    Chen DR, Chang RF, Huang YL. Computer-aided diagnosis applied to US of solid breast nodules by using neural networks. Radiology 1999; 213: 407412.
  • 6
    Giger ML. Computerized analysis of images in the detection and diagnosis of breast cancer. Semin Ultrasound CT MR 2004; 25: 411418.
  • 7
    Drukker K, Giger ML, Vyborny CJ, Mendelson EB. Computerized detection and classification of cancer on breast ultrasound. Acad Radiol 2004; 11: 526535.
  • 8
    Collins MJ, Hoffmeister J, Worrell SW. Computer-aided detection and diagnosis of breast cancer. Semin Ultrasound CT MR 2006; 27: 351355.
  • 9
    Huang YL, Kuo SJ, Chang CS, Liu YK, Moon WK, Chen DR. Image retrieval with principal component analysis for breast cancer diagnosis on various ultrasonic systems. Ultrasound Obstet Gynecol 2005; 26: 558566.
  • 10
    Chang RF, Kuo WJ, Chen DR, Huang YL, Lee JH, Chou YH. Computer-aided diagnosis for surgical office-based breast ultrasound. Arch Surg 2000; 135: 696699.
  • 11
    Chen DR, Chang RF, Huang YL, Chou YH, Tiu CM, Tsai PP. Texture analysis of breast tumors on sonograms. Semin Ultrasound CT MR 2000; 21: 308316.
  • 12
    Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995; 196: 123134.
  • 13
    Chen CM, Chou YH, Han KC, Hung GS, Tiu CM, Chiou HJ, Chiou SY. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 2003; 226: 504514.
  • 14
    Chang RF, Wu WJ, Moon WK, Chen DR. Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat 2005; 89: 179185.
  • 15
    Huang YL, Jiang YR, Chen DR, Moon WK. Level set contouring for breast tumor in sonography. J Digit Imaging 2007; [Epub ahead of print].
  • 16
    Christianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press: Cambridge, 2000.
  • 17
    Drukker K, Giger ML, Mendelson EB. Computerized analysis of shadowing on breast ultrasound for improved lesion detection. Med Phys 2003; 30: 18331842.
  • 18
    Whitaker RT, Xinwei X. Variable-conductance, level-set curvature for image denoising. Proc Int Conf Image Process 2001; 3: 142145.
  • 19
    Otsu N. Threshold selection method from gray-level histograms. IEEE T Syst Man Cy 1979; 9: 6266.
  • 20
    Osher S, Sethian J. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 1988; 79: 1249.
  • 21
    Tohno E, Cosgrove DO, Sloane JP. Ultrasound Diagnosis OF Breast Diseases. Churchill Livingstone: Edinburgh, 1994.
  • 22
    Kim KI, Jung K, Park SH, Kim HJ. Support vector machines for texture classification. IEEE T Pattern Anal 2002; 24: 15421550.
  • 23
    Song Q, Hu WJ, Xie WF. Robust support vector machine with bullet hole image classification. IEEE T Syst Man Cy C 2002; 32: 440448.
  • 24
    El Naqa I, Yang YY, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging 2002; 21: 15521563.
  • 25
    Yang MH, Roth D, Ahuja N. A tale of two classifiers: SNoW vs. SVM in visual recognition. In Computer Vision—ECCV 2002, Vol 2353. Springer: Berlin/Heidelberg, 2002; 685699.
  • 26
    Sun YF, Fan XD, Li YD. Identifying splicing sites in eukaryotic RNA: support vector machine approach. Comp Biol Med 2003; 33: 1729.
  • 27
    Song MH, Breneman CM, Bi JB, Sukumar N, Bennett KP, Cramer S, Tugcu N. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J Chem Inf Comp Sci 2002; 42: 13471357.
  • 28
    Weiss SM, Kapouleas I. An empirical comparison of pattern recognition neural nets and machine learning classification methods. Proceedings of the 11th International Joint Conference on Artificial Intelligence 1989; 234237.
  • 29
    Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 2936.
  • 30
    Huang YL, Wang KL, Chen DR. Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Comput Appl 2006; 15: 164169.
  • 31
    Huang SF, Chang RF, Chen DR, Moon WK. Characterization of spiculation on ultrasound lesions. IEEE Trans Med Imaging 2004; 23: 111121.
  • 32
    Chang RF, Huang SF, Moon WK, Lee YH, Chen DR. Computer algorithm for analysing breast tumor angiogenesis using 3-D power Doppler ultrasound. Ultrasound Med Biol 2006; 32: 14991508.