• 1
    Macias Fauria M, Michaletz ST, Johnson EA. Predicting climate change effects on wildfires requires linking processes across scales. WIREs Clim Change 2011, 2:99112.
  • 2
    Centre for Research on the Epidemiology of Disasters. 2009 EM-DAT—The International Disaster Database. Available at:
  • 3
    Fisher EM, Knutti R. Robust projections of combined humidity and temperature extremes. Nat Clim Change 2013, 3:126130.
  • 4
    Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ. Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 2010, 99:125161.
  • 5
    Pathiraja S, Westra S, Sharma A. Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour Res 2012, 48:W06534.
  • 6
    Trenberth KE. Changes in precipitation with climate change. Climate Res 2011, 47:123138.
  • 7
    Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, et al. Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, et al, eds. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA; 2012, 109230.
  • 8
    Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Zbigniew W, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ. Stationarity is dead: whither water management? Science 2008, 319:573574.
  • 9
    Ehret U, Gupta HV, Sivapalan M, Weijs S, Schymanski SJ, Bloschl G, Gelfan AN, Harman C, Kleidon A, Bogaard TA, et al. Advancing catchment hydrology to deal with predictions under change. Hydrol Earth Syst Sci 2013, 10:85818634.
  • 10
    Box G, Hunter J, Hunter W. Statistics for Experimenters: Design, Innovation and Discovery. 2nd ed. New Jersey: Wiley-Interscience; 2005.
  • 11
    Kumar A, Chen M, Hoerling M, Eischeid J. Do extreme climate events require extreme forcing? Geophys Res Lett 2013, 40:34403445.
  • 12
    Yule GU. Why do we sometimes get nonsense-correlations between timeseries? A study in sampling and the nature of timeseries. J R Stat Soc 1926, 89:164.
  • 13
    Berkhout F, van den Hurk B, Bessembinder J, de Boer J, Bregman B, van Drunen M. Framing climate uncertainty: socio-economic and climate scenarios in vulnerability and adaptation assessments. Reg Environ Change, in press.
  • 14
    Fischer EM, Knutti R. Robust projections of combined humidity and temperature extremes. Nat Clim Change 2013, 3:126130.
  • 15
    Stommel H. Varieties of oceanographic experience. Science 1963, 139:572576.
  • 16
    Orlanski I. A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 1975, 56:527530.
  • 17
    Hargrove WW, Gardner RH, Turner MG, Romme WH, Despain DG. Simulating fire patterns in heterogeneous landscapes. Ecol Model 2000, 135:243263.
  • 18
    Knippertz P, Fink AH. Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Q J R Meteorol Soc 2006, 132:11531177.
  • 19
    Schuster S, Blong R, McAnerney KJ. Relationship between radar-derived hail kinetic energy and damage to insured buildings for severe hailstorms in Eastern Australia. Atmos Res 2006, 81:215235.
  • 20
    Hawkes PJ, Gouldby BP, Tawn JA, Owen MW. The joint probability of waves and water levels in coastal engineering design. J Hydrol Res 2002, 3:241251.
  • 21
    Sheffield J, Wood E. Drought—Past Problems and Future Scenarios. London: Earthscan; 2011.
  • 22
    Pausas JG. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 2004, 63:337350.
  • 23
    Leonard M, Metcalfe AV, Lambert MF. Frequency analysis of rainfall and streamflow extremes accounting for seasonal and climatic partitions. J Hydrol 2008, 348:135147.
  • 24
    IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, p 104.
  • 25
    Clark WC. Scales of climate impacts. Clim Change 1985, 7:527.
  • 26
    Bloschl G, Sivapalan M. Scale issues in hydrological modelling: a review. Hydrol Process 1995, 9:251290.
  • 27
    Queensland Flood Commission of Inquiry. Final Report. 2010. Available at:
  • 28
    Evans J, Boyer-Souchet I. Local sea surface temperatures add to extreme preciptation in northeast Australia during La Nina. Geophys Res Lett 2012, 39:L10803.
  • 29
    Coles SG. An Introduction to Statistical Modelling of Extreme Values. London: Springer; 2001.
  • 30
    Westra S, Alexander LV, Zwiers FW. Global increasing trends in annual maximum daily precipitation. J Climate 2013, 26:39043918.
  • 31
    Min SK, Zhang X, Zwiers F, Hegerl GC. Human contribution to more-intense precipitation extemes. Nature 2011, 470:378381.
  • 32
    Kundzewicz ZW. Trend detection in river flow series: 1. Annual maximum flow. Hydrol Sci J 2005, 50:797810.
  • 33
    Milly PCD, Wetherald RT, Dunne KA, LDelworth TL. Increasing risk of great floods in a changing climate. Nature 2002, 415:514517.
  • 34
    Henderson-Sellers A. An antipodean climate of uncertainty? Clim Change 1993, 25:203224.
  • 35
    Mason M, Phillips E, Okada T, Brien JO. Analysis of damage to buildings following the 2010–11 eastern Australia floods, 2010, p 96.
  • 36
    Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O'Neill BC, Rounsevell MDA, Zurek MB. New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, eds. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007, 133171.
  • 37
    Brown C, Ghile Y, Laverty M, Li K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour Res 2012, 48:W09537.
  • 38
    Catenacci M, Giupponi C. Potentials and limits of Bayesian networks to deal with uncertainty in the assessment of climate change adaptation policies. Nota di Lavoro (FEEM) 2010, p 28.
  • 39
    Chen SH, Pollino CA. Good practice in Bayesian network modelling. Environ Model Software 2012, 37:134145.
  • 40
    Verrall RJ. Modelling operational risk with Bayesian networks. J Risk Insur 2007, 74:795827.
  • 41
    Ren J, Wang J, Jenkinson I, Xu DL, Yang JB, Street B. A Bayesian network approach for offshore risk analysis through linguistic variables. 2002, 21:371388.
  • 42
    Gutierrez BT. A Bayesian network to predict coastal vulnerability to sea level rise. J Geophys Res Earth Surf 2011, 116:148227.
  • 43
    Peter C, De Lange W, Musango JK, PSpril K, Potgieter A. Applying Bayesian modelling to assess climate change effects on biofuel production. Climate Res 2009, 40:249260.
  • 44
    Molina J-L, Pulido-Velazquez D, Garcia-Arostegui JL, Pulido-Velazquez M. Dynamic Bayesian networks as a decision support tool for assessing climate change impacts on highly stressed groundwater sysetms. J Hydrol 2012, 479:113129.
  • 45
    Rummukainen M. State-of-the-art with regional climate models. WIREs Clim Change 2010, 1:8296.
  • 46
    Fowler HJ, Blenkinsop S, Tebaldi C. Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 2007, 27:15471578.
  • 47
    Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themebl M, et al. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 2010, 48:RG3003.
  • 48
    Rahman A, Weinmann PE, Hoang TMT, Laurenson EM. Monte Carlo simulation of flood frequency curves from rainfall. J Hydrol 2002, 256:196210.
  • 49
    Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 2011, 470:382385.
  • 50
    Hosking JRM, Wallis JR. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge: Cambridge University Press; 2005.
  • 51
    Coles S, Pauli F. Models and inference for uncertainty in extremal dependence. Biometrika 2002, 89:183196.
  • 52
    Johnson EA, Gutsell S. Fire frequency models, methods and interpretations. Adv Ecol Res 1994, 25:239287.
  • 53
    Resnick S. Extreme Values, Point Processes and Regular Variation. New York: Springer; 1987.
  • 54
    Coles S, Tawn JA. Modelling extreme multivariate events. J R Soc Ser B (Methodologic) 1991, 53:377392.
  • 55
    Heffernan J, Tawn JA. A conditional approach for multivariate extreme values (with discussion). J R Soc Ser B (Methodologic) 2004, 66:497546.
  • 56
    Svensson C, Jones DA. Dependence between sea surge, river flow and precipitation in south and west Britain. Hydrologic Earth Syst Sci 2004, 8:973992.
  • 57
    Svensson C, Jones DA. Dependence between extreme sea surge, river flow and precipitation in east Britain. Int J Climatol 2002, 22:11491168.
  • 58
    Loganathan GV, Kuo CY, Yannaccone J. Joint probability distribution of streamflows and tides in estuaries. Nordic Hydrol 1987, 18:237246.
  • 59
    Davison AC, Padoan SA, Ribatet M. Statistical modelling of spatial extremes. Stat Sci 2012, 27:161186.
  • 60
    Padoan SA, Ribatet M, Sisson SA. Likelihood-based inference for max-stable processes. J Am Stat Assoc 2010, 105:263277.
  • 61
    Westra S, Sisson SA. Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrology 2011, 406:119128.
  • 62
    Aryal SK, Bates BC, Campbell EP, Li Y, Palmer MJ, Viney NR. Characterizing and modelling temporal and spatial trends in rainfall extremes. J Hydrometeorol 2009, 10:13.
  • 63
    Cooley D, Nychka D, Naveau P. Bayesian spatial modelling of extreme precipitation return levels. J Am Stat Assoc 2007, 102:824840.
  • 64
    Nelson RB. An Introduction to Copulas. New York: Springer; 1999.
  • 65
    Zhang L, Singh VP. Trivariate flood frequency analysis using the Gumbel–Hougaard copula. J Hydrol Eng 2007, 12:431440.
  • 66
    Renard B, Lang M. Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 2007, 30:897912.
  • 67
    Mikosch T. How to model multivariate extremes if one must. Stat Neerlandica 2005, 59:324338.
  • 68
    Kurowicka D. Conditionalization of copula-based models. Decision Anal 2012, 9:219230.
  • 69
    Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, et al. Global climate projections. Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007.
  • 70
    Risbey J, O'Kane T. Sources of knowledge and ignorance in climate research. Clim Change 2011, 108:755773.
  • 71
    Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 2012, 39:L16502.
  • 72
    Liu J, Curry JA, Wang H, Song M, Horton RM. Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 2012, 109:40744079.
  • 73
    Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc Natl Acad Sci 2013, 110:53365341.
  • 74
    Johnson F, Westra S, Sharma A, Pitman AJ. An assessment of GCM skill in simulating persistence across multiple timescales. J Climate 2011, 24:36093623.