Probabilistic wind power forecasts using local quantile regression

Authors

  • John Bjørnar Bremnes

    Corresponding author
    1. Research and Development Department, Norwegian Meteorological Institute, PO Box 43 Blindern, N-0313 Oslo, Norway
    • Research and Development Department, Norwegian Meteorological Institute, PO Box 43 Blindern, N-0313 Oslo, Norway
    Search for more papers by this author

Abstract

Wind power forecasts are in various ways valuable for users in decision-making processes. However, most forecasts are deterministic, and hence possibly important information about uncertainty is not available. Complete information about future production can be obtained by using probabilistic forecasts, and this article demonstrates how such forecasts can be created by means of local quantile regression. The approach has several advantages, such as no distributional assumptions and flexible inclusion of predictive information. In addition, it can be shown that, for some purposes, forecasts in terms of quantiles provide the type of information required to make optimal economic decisions. The methodology is applied to data from a wind farm in Norway. Copyright © 2004 John Wiley & Sons, Ltd.

Ancillary