• 1
    U.S. Department of Energy (DOE). July 2008.20% wind energy by 2030: increasing wind energy's contribution to U.S. electricity supply. DOE Office of Energy Efficiency and Renewable Energy Report. Available at:
  • 2
    European Union (EU). Climate change: commission welcomes final adoption of Europe's climate and energy package. Press Release: EU, Dec. 17, 2008. Available at:
  • 3
    People's Daily Online. China to Have 100 GW Wind Power Energy Capacity by 2020. Press Release: China, May 4 th 2009. Available at:
  • 4
    Bessa RJ, Miranda V, Gama J. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Transaction on Power Systems 2009; 24(4): 16571666.
  • 5
    Ortiz-Garcia EG, Salcedo-Sanz S, Perez-Bellido AM, Gascon-Moreno J, Portila-Figueras JA, Prieto L. Short-term wind speed prediction in wind farms based on banks of support vector machines. Wind Energy 2011; 14(2): 93207.
  • 6
    Sweeney C, Lynch P. Adaptive post-processing of short-term wind forecasts for energy applications. Wind Energy 2011; 14(3): 317325.
  • 7
    Nielsen HA, Madsen H, Nielsen TS. Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts. Wind Energy 2006; 9(1-2): 95108.
  • 8
    Chen P, Pedersen T, Jensen-Bak B, Chen Z. ARIMA-based time series model of stochastic wind power generation. IEEE Transaction on Power Systems 2010; 25(2): 667675.
  • 9
    Pritchard G. Short-term variations in wind power: some quantile-type models for probabilistic forecasting. Wind Energy 2011; 14(2): 255269.
  • 10
    Thordarson FO, Madsen H, Nielsen HA, Pinson P. Conditional weighted combination of wind power forecasts. Wind Energy 2011; 13(6): 751763.
  • 11
    Pinson P, Kariniotakis G. Conditional prediction intervals of wind power generation. IEEE Transactions on Power Systems 2011; 25(4): 18451856.
  • 12
    Tastu J, Pinson P, Kotwa E, Madsen H, Nielsen HA. Spatio-temporal analysis and modeling of short-term wind power forecasts errors. Wind Energy 2011; 14(1): 4360.
  • 13
    Monteiro C, Bessa R, Miranda V, Botterud A, Wang J, Conzelmann G. Wind power forecasting: state-of-the-art 2009, ANL/DIS-10-1, Argonne National Laboratory, (Nov. 2009). [Online]. Available at:
  • 14
    Giebel G, Brownsword R, Kariniotakis G, Denhard M, Draxl C. The state-of-the-art in short-term prediction of wind power—a literature overview, 2nd edn. Technical Report, EU Project ANEMOS. Available at:\&objectId=1\&versionId=1.
  • 15
    Bessa RJ, Miranda V, Botterud A, Wang J. ‘Good’ or ‘bad’ wind power forecasts: a relative concept. Wind Energy 2011; 14(5): 625636.
  • 16
    Barth R, Brand H, Meibom P, Weber C. A stochastic unit commitment model for the evaluation of the impacts of the integration of large amounts of wind power, InProc. 9th International Conferences Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 2006.
  • 17
    Bouffard F, Galiana F. Stochastic security for operations planning with significant wind power generation. IEEE Transactions on Power Systems 2008; 23(2): 306316.
  • 18
    Wang J, Shahidehpour M, Li Z. Security-constrained unit commitment with volatile wind power generation. IEEE Transactions on Power Systems Aug. 2008; 23(3): 13191327.
  • 19
    Billinton R, Karki B, Karki R, Ramakrishna G. Unit commitment risk analysis of wind integrated power systems. IEEE Transaction on Power Systems 2009; 24(2): 930939.
  • 20
    Makarov YV, Loutan C, Ma J, Mello P. Operational impacts of wind generation on california power systems. IEEE Transaction on Power Systems 2009; 24(2): 10391050.
  • 21
    Pappala VS, Erlich I, Rohrig K, Dobschinski J. A stochastic model for the optimal operation of a wind-thermal power system. IEEE Transaction on Power Systems 2009; 24(2): 940950.
  • 22
    Li X, Jiang C. Short-term operation model and risk management for wind power penetrated system in electricity market. IEEE Transactions on Power Systems 2011; 26(2): 932939.
  • 23
    Tuohy A, Meibom P, Denny E, O'Malley M. Unit commitment for systems with significant wind penetration. IEEE Transactions on Power Systems 2009; 24(2): 592601.
  • 24
    Wind power integration in liberalised electricity markets (Wilmar) project. Available at:
  • 25
    Constantinescu EM, Zavala VM, Rocklin M, Lee S, Anitescu M. A computational cramework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Transactions on Power Systems 2011; 26(1): 431441.
  • 26
    Wang J, Botterud A, Bessa R, Keko H, Carvalho L, Issicaba D, Sumaili J, Miranda V. Wind power forecasting uncertainty and unit commitment. Applied Energy 2011; 88(11): 40144023.
  • 27
    Doherty R, O'Malley M. A new approach to quantify reserve demand in systems with significant installed wind capacity. IEEE Transactions on Power Systems 2005; 20(2): 587595.
  • 28
    Morales JM, Conejo AJ, Perez-Ruiz J. Economic valuation of reserves in power systems with high penetration of wind power. IEEE Transaction on Power Systems 2009; 24(2): 900910.
  • 29
    Ortega-Vazquez MA, Krischen DS. Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Transaction on Power Systems 2009; 24(1): 114124.
  • 30
    Ela E, Kirby B, Lannoye E, Milligan M, Flynn D, Zavadil B, O'Malley M. Evolution of operating reserve determination in wind power integration studies, Proceedings IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, July 2010.
  • 31
    Matos MA, Bessa R. Setting the operating reserve using probabilistic wind power forecasts. IEEE Transactions on Power Systems May 2011; 26(2): 594603.
  • 32
    Pinson P, Nielsen HA, Moller JK, Madsen H, Kariniotakis G.Nonparametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 2007; 10: 497516.
  • 33
    Bessa RJ, Mendes J, Miranda V, Botterud A, Wang J, Zhou Z. Quantile-copula density forecast for wind power uncertainty modeling, Proceedings IEEE Trondheim PowerTech 2011, Trondheim Norway, June 2011.
  • 34
    Bessa RJ, Miranda V, Botterud A, Zhou Z, Wang J. Time-adaptive quantile-copula for wind power probabilistic forecasting. Renewable Energy 2012; 40(1): 2939.
  • 35
    Faugeras OP. A quantile-copula approach to conditional density estimation. Journal of Multivariate Analysis 2009; 100: 20832099.
  • 36
    Chen SX. Beta kernel estimators for density functions. Computational Statistics & Data Analysis 1999; 31: 131145.
  • 37
    Mardia KV, Jupp PE. Directional Statistics, Wiley's Series in Probability and Statistics. Wiley: New York, 1999.
  • 38
    Hyndman RJ, Bashtannyk DM, Grunwald GK. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics Dec. 1996; 5(4): 315-336.
  • 39
    Botterud A, Zhou Z, Wang J, Valenzuela J, Sumaili J, Bessa R, Keko H, Miranda V. Unit commitment and operating reserves with probabilistic wind power forecasts, Proceedings of IEEE PES PowerTech 2011, Trondheim, Norway, 19–23 June 2011.
  • 40
    Pinson P, Girard R. 2011. Evaluating scenarios of short-term wind power generation. paper submitted to Applied Energy.
  • 41
    Pinson P, Papaefthymiou G, Klockl B, Nielsen HA, Madsen H. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 2009; 12(1): 5162.
  • 42
    Gröwe-Kuska N, Heitsch H, Römisch W. Scenario reduction and scenario tree construction for power management problems, Proceedings 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, June 2003.
  • 43
    Rajan D, Takriti S. June 2005. Minimum up/down polytopes of the unit commitment problem with start-up costs. Report RC23628, IBM Research.
  • 44
    Cirillo RR, Thimmapuram P, Veselka T, Koritarov V, Conzelmann G, Macal C, Boyd G, North M, Overbye T, Cheng X. April 2006. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois, Report ANL 16/06, Argonne National Laboratory.
  • 45
    Eastern Wind Integration and Transmission Study (EWITS), National Renewable Energy Laboratory (NREL). Information at:
  • 46
    Brower M. December 2009. Development of eastern regional wind resource and wind plant output datasets, NREL Subcontract Report NREL/SR-550-46764.
  • 47
    Midwest ISO (MISO). Jan. 2009. Business practices manual—energy and operating reserve markets: attachment B day-ahead energy and operating reserve market software formulations and business logic, MISO Report, Available from:
  • 48
    Ruiz PA, Philbrick CR, Sauer PW. Wind power day-ahead uncertainty management through stochastic unit commitment policies, Proceedings 2009 Power Systems Conference and Exhibition, Seattle, WA, 2009.