SEARCH

SEARCH BY CITATION

Keywords:

  • wind turbine blade;
  • topology optimization;
  • sizing optimization

ABSTRACT

As wind turbines continue to grow in size, it becomes increasingly important to ensure that they are as structurally efficient as possible to ensure that wind energy can be a cost-effective source of power generation. A way to achieve this is through weight reductions in the blades of the wind turbine. In this study, topology optimization is used to find alternative structural configurations for a 45 m blade from a 3 MW wind turbine. The result of the topology optimization is a layout that varies along the blade length, transitioning from a structure with trailing edge reinforcement to one with offset spar caps. Sizing optimization was then performed on a section with the trailing edge reinforcement and was shown to offer potential weight savings of 13.8% when compared with a more conventional design. These findings indicate that the conventional structural layout of a wind turbine blade is sub-optimal under the static load conditions that were applied, suggesting an opportunity to reduce blade weight and cost. Copyright © 2012 John Wiley & Sons, Ltd.