SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Moon S-M, Clark* RL, Cole DG. The recursive generalized predictive feedback control: theory and experiments. Journal of Sound and Vibration 2005; 279: 171199.
  • 2
    Clarke DW, Mohtadi C. Properties of generalized predictive control. Automatica 1989; 25: 859875.
  • 3
    Clarke DW, Mohtadi C, Tuffs PS. Generalized predictive control part I. The basic algorithm. Automatica 1987; 23: 137148.
  • 4
    Clarke DW, Mohtadi C, Tuffs PS. Generalized predictive control part II. Extensions and interpretations—part II. Automatica 1987; 23: 149160.
  • 5
    Kadali R, Huang B. Estimation of the dynamic matrix and noise model for model predictive control using closed-loop data. Industrial and Engineering Chemistry Research 2002; 41: 842852.
  • 6
    Gormandy A, Postlethwaite BE. Incorporating the crisp consequent FRM into dynamic matrix control. Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9–12, 2002.
  • 7
    Aufderheide B, Bequette BW. Extension of dynamic matrix control to multiple models. Computers and Chemical Engineering 2003; 27: 10791096.
  • 8
    De Almeida GM, Salles JLF, Filho Jd. Optimal tuning parameters of the dynamic matrix predictive controller with constraints. Latin American Applied Research 2009; 39: 4146.
  • 9
    Moon U-C, Lee KY. Step-response model development for dynamic matrix control of a drum-type boiler–turbine system. IEEE Transactions on Energy Conversion 2009; 24: 423430.
  • 10
    Moon U-C, Lee KY. An adaptive dynamic matrix control with fuzzy-interpolated step-response model for a drum-type boiler-turbine system. IEEE Transactions on Energy Conversion 2011; 26: 393401.
  • 11
    Nippert CR. Simple models that illustrate dynamic matrix control. Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 2002, American Society for Engineering Education.
  • 12
    Besenyei A, Simon P. Asymptotic output controllability via dynamic matrix control, 2000 Mathematics Subject Classification.
  • 13
    Sung SW, Lee I-B. Modified dynamic matrix control. Korean Journal of Chemical Engineering 1997; 14: 245248.
  • 14
    Kim W, Moon U-C, Lee KY, Jung W-H, Kim S-H. Once-through boiler steam temperature control using dynamic matrix control technique. Power and Energy Society General Meeting, 16, 25–29 July 2010 IEEE.
  • 15
    Moon U-C, Lee KY. A boiler-turbine system control using a fuzzy auto-regressive moving average (FARMA) model. IEEE Transactions on Energy Conversion 2003; 18: 142148.
  • 16
    Bianchi F, Battista HD, Mantz RJ. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design. Springer: London, U.K, 2006.
  • 17
    Irribas M. Wind turbine identification loop operation. CENER, Ref IN-08.00289, 2006.
  • 18
    Jonkman B. TurbSim users guide: version 1.50. Tech. rep., National Renewable Energy Laboratory, Colorado, USA, 2009.
  • 19
    Jonkman JM, Jr., MLB. FAST users guide. Tech. rep., National Renewable Energy Laboratory, Colorado, USA, 2005.
  • 20
    Hansen MH, Hansen A, Larsen TJ, Oye S, Sorensen P, Fuglsang P. Control design for a pitch regulated variable speed wind turbine. Tech. rep., Riso National Laboratory, Roskilde, Denmark, 2005.
  • 21
    Iribas-Latour M, Landau ID. Closed loop identification of wind turbines models for pitch control. 17th Mediterranean Conference on Control and Automation (MED'09). Thessaloniki: Greece, 2009.
  • 22
    Langer J, Landau ID. Improvement of robust digital control by identification in closed loop. Application to a 360° flexible arm. Control Engineering Practice 1996; 4: 16371646.
  • 23
    Björck Å. Numerical methods for least squares problems. SIAM. ISBN 978-0-898713-60-2, 1996.
  • 24
    Landau ID. From robust control to adaptive control. CEP 1999; 7: 11131124.
  • 25
    Anderson TW. The Statistical Analysis of Time Series. John Wiley & Sons: San Francisco, CA 94104, US, 1994.