• 1
    Paulsen US, Pedersen FT, Madsen HA, Enevoldsen K, Nielsen PH, Hattel J, Zanne L, Battisti L, Brighenti A, Lacaze M, Lim V, Heinen JW, Berthelsen PA, Carstensen S, de Ridder EJ, van Bussel G, Tescione G. Deepwind—an innovative wind turbine concept for offshore. European Wind Energy Association (EWEA) Annual Event. Brussels, 2011.
  • 2
    Vita L, Paulsen US, Pedersen TF. A novel floating offshore wind turbine concept: new developments. European Wind Energy Conference and Exhibition. Poland, 2010.
  • 3
    Vita L, Paulsen US, Pedersen TF, Madsen HA, Rasmussen F. A novel floating offshore wind turbine concept. European Wind Energy Conference and Exhibition. Marseille, France, 16–19 March, 2009.
  • 4
    Cahay M, Luquiau E, Smadja C, Silvert FCC. Use of a vertical wind turbine in an offshore floating wind farm. Offshore Technology Conference Houston, Texas, USA, 2-5 May 2011.
  • 5
    10MW Aerogenerator X © Wind Power Limited & Grimshaw at
  • 6
    Paraschivoiu I. Double-multiple streamtube model for Darrieus wind turbines. Second DOE/NASA Wind Turbines Dynamics Workshop, NASA CP-2185. Cleveland, Ohio, February 1981.
  • 7
    Paraschivoiu I, Delclaux F. Double multiple streamtube model with recent improvements. AIAA Journal of Energy 1983; 7: 250255.
  • 8
    Templin RJ. Aerodynamic performance theory for the NRC vertical-axis wind turbine. Technical Report LTR-LA-160, National Aeronautical Establishment, Ottawa, Ontario (Canada), 1974.
  • 9
    Strickland JH. The Darrieus turbine: a performance prediction model using multiple streamtubes. SAND75-0430, Sandia National Laboratories, Albuquerque, N.M., October 1975.
  • 10
    Ponta FL, Jacovkis PM. A vortex model for Darrieus turbine using finite element techniques. Renewable Energy 2001; 24: 118.
  • 11
    Scheurich F, Fletcher TM, Brown RE. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy 2011; 14: 159177. DOI: 10.1002/we.409.
  • 12
    Zanon A, Giannattasio P, Simão Ferreira CJ. A vortex panel model for the simulation of the wake flow past a vertical axis wind turbine in dynamic stall. Wind Energy 2012. DOI: 10.1002/we.1515.
  • 13
    Strickland JH, Webster BT, Nguyen T. A vortex model of the Darrieus turbine: an analytical and experimental study. Journal of Fluid Engineering 1979; 101: 500505.
  • 14
    Simão Ferreira CJ, van Zuijlen A, Bijl H, van Bussel G, van Kuik G. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: verification and validation with particle image velocimetry data. Wind Energy 2009; 13: 117. DOI: 10.1002/we.330.
  • 15
    Gormont RE. A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors. USAMRDL Technical Report 72-67, Boeing Co., Vertol Div., Philadelphia, PA, 1973.
  • 16
    Paraschivoiu I. Wind Turbine Design: with Emphasis on Darrieus Concept. Polytechnic International Press: Montreal, 2002.
  • 17
    Berg DE. An improved double-multiple streamtube model for the Darrieus type vertical-axis wind turbine. Preceedings of the Sixth Biennial Wind Energy Conference and Workshop,Minneapolis,MN, June 1983.
  • 18
    Snel H. Application of a modified Theodorsen model to the estimation of aerodynamic forces and aeroelastic stability. European Wind Energy Conference, London, 22–25 November 2004.
  • 19
    Tran C, Falchero D. Application of the ONERA dynamic-stall model to a helicopter blade in forward flight. Vertica 1982; 6: 219239.
  • 20
    Hansen MH, Gaunaa M, Madsen HA. A Beddoes–Leishman type dynamic stall model in state-space and indicial formulations. Technical Report Risø-R-1354 (en), Risø National Laboratory, Roskilde, Denmark, 2004.
  • 21
    Larsen JW, Nielsen SRK, Krenk S. Dynamic stall model for wind turbine airfoils. Journal of Fluids and Structures 2007; 23: 959982.
  • 22
    Øye S. Dynamic stall simulated as time lag of separation. Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines, IEA, Rome, ETSU-N-118, November 1991.
  • 23
    Sheng W, Galbraith RAM, Coton F. A modified dynamic stall model for low Mach numbers. Journal of Solar Energy Engineering 2008; 130: 031013.1031013.10. DOI: 10.1115/1.2931509.
  • 24
    Gupta S, Leishman J. Dynamic stall modelling of the S809 aerofoil and comparison with experiments. Wind Energy 2006; 9: 521547.
  • 25
    Leishman J, Beddoes T. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society 1989; 34: 317.
  • 26
    Mertens S, van Kuik G, van Bussel G. Performance of an H-Darrieus in the skewed flow on a roof. Journal of Solar Energy Engineering 2003; 125: 433440.
  • 27
    Ferreira CJS, van Bussel GJW, van Kuik GAM. Wind tunnel hotwire measurements, flow visualization and thrust measurement of a VAWT in skew. Journal of Solar Energy Engineering 2006; 128: 487.
  • 28
    Worstell MH. Aerodynamic performance of the 17-metre-diameter Darrieus wind turbine. Technical Report SAND-78-1737, Department of Energy, Sandia Laboratories, Albuquerque, N.M., 1979.
  • 29
    Worstell MH. Measured aerodynamics and systems performance of the 17-m research machine. Proceedings of the Vertical-Axis Wind Turbine Design Technology Seminar for Industry, Albuquerque, N.M., April 1980.
  • 30
    Paulsen US, Vita L, Madsen HA, Hattel J, Ritchie E, Leban KM, Berthelsen PA, Carstensen S. 1st DeepWind 5 MW baseline design. Energy Procedia 2012; 24: 2735.
  • 31
    Burton T, Jenkins N, Sharpe D, Bossanyi E. Wind Energy Handbook. John Wiley & Sons Ltd: England, 2011.
  • 32
    Leishman JG. Principles of Helicopter Aerodynamics (2nd edn). Cambridge Aerospace Series. Cambridge University Press: Cambridge, 2006.
  • 33
    Johnson W. Comparison of three methods for calculation of helicopter rotor blade loading and stresses due to stall. NASA TN D-7833, National Aeronautics and Space Administration, 1974.
  • 34
    Beddoes T. A synthesis of unsteady aerodynamic effects including stall hysteresis. Vertica 1976; 1: 113123.
  • 35
    Beddoes T. Onset of leading edge separation effects under dynamic conditions and low Mach number. 34th Annual Forum of the American Helicopter Society, Washington, D. C., May 15-17, 1978.
  • 36
    Gangwani ST. Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads. American Helicopter Society, Annual Forum, 39th, St. Louis, MO, 1984.
  • 37
    Truong VK. Prediction of helicopter rotor airloads based on physical modelling of 3D unsteady aerodynamics. 22nd European Rotorcraft Forum. Brighton, UK, 1996.
  • 38
    Carr LW. Progress in analysis and prediction of dynamic stall. Journal of Aircraft 1988; 25: 617.
  • 39
    Rapin M, Ortun B. 3D rotational correction in ONERA aeroelastic predictions of NREL wind turbine. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.
  • 40
    Brouwer HH. The adaptation of the ONERA model for dynamic stall, for application in the wind-turbine analysis programme PHATAS. In Contract Report NLR CR 90104 L. National Aerospace Laboratory NLR: The Netherlands, 1990.
  • 41
    Moriarty PJ, Hansen AC. Aerodyn theory manual. NREL/TP-500-36881, National Renewable Energy Laboratory, Golden, Colorado, 2005.
  • 42
    Allet A, Paraschivoiu I. Viscous flow and dynamic stall effects on vertical-axis wind turbines. International Journal of Rotating Machinery 1995; 2: 114.
  • 43
    Akins RE. Measurements of surface pressures on an operating vertical-axis wind turbine. Contractor Report SAND89-7051, Sandia National Laboratories, November 1989.
  • 44
    Vita L. Offshore floating vertical axis wind turbines with rotating platform. Risø-PhD-80(EN), National Laboratory for Sustainable Energy, DTU, August 2011.
  • 45
    Mert M. Optimization of semi-empirical parameters in the FFA-Beddoes dynamic stall model. FFA TN 1999-37, 1999.
  • 46
    Pereira R, Schepers G, Pavel MD. Validation of the Beddoes–Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data. Wind Energy 2013; 16: 207219. DOI: 10.1002/we.541.
  • 47
    Wang K, Hansen MOL, Moan T. A method for modeling of floating vertical axis wind turbine. Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, June 9–14, 2013.