Get access
Advertisement

Modeling stable thermal stratification and its impact on wind flow over topography

Authors


Abstract

Microscale flow models used in the wind energy industry commonly assume statically neutral conditions. These models can provide reasonable wind speed predictions for statically unstable and neutral flows; however, they do not provide reliable predictions for stably stratified flows, which can represent a substantial fraction of the available energy at a given site. With the objective of improving wind speed predictions and in turn reducing uncertainty in energy production estimates, we developed a Reynolds-Averaged Navier–Stokes (RANS)-based model of the stable boundary layer. We then applied this model to eight prospective wind farms and compared the results with on-site wind speed measurements classified using proxies for stability; the comparison also included results from linear and RANS wind flow models that assume neutral stratification. This validation demonstrates that a RANS-based model of the stable boundary layer can significantly and consistently improve wind speed predictions. Copyright © 2014 John Wiley & Sons, Ltd.

Get access to the full text of this article

Ancillary