Get access

Resonant overvoltage assessment in offshore wind farms via a parametric black-box wind turbine transformer model

Authors


Abstract

The protection of offshore wind farms (OWFs) against overvoltages, especially resonant overvoltage, is of paramount importance because of poor accessibility and high repair costs. In this paper, we study how switching overvoltages at the wind turbine transformer (WTT) medium voltage (MV) side can lead to high overvoltages on the low voltage (LV) side. The effect of overvoltage protective devices is analyzed. A detailed model of an OWF row is developed in electromagnetic transients program–alternative transients program (EMTP-ATP), including interconnecting cables, WTT, surge arresters and resistive–capacitive filters. A parameterized black-box WTT model is obtained from measurements and is used for investigating the transfer of resonant overvoltages from the MV to the LV side. The model is capable of shifting systematically the frequencies and adjusting the transformer input impedance. Simulation results show that wind turbine energization in an OWF can lead to overvoltages on the LV terminals. The rate of rise of overvoltages (du/dt) is in the range of 300–500 pu/µs. It is found that resistive–capacitive filters should be installed on both MV and LV terminals of WTTs to decrease both resonant overvoltages and du/dt, which is unachievable by surge arrester alone. Copyright © 2014 John Wiley & Sons, Ltd.

Get access to the full text of this article

Ancillary