• 1
    Jonkman J, Buhl JML, FAST user's guide. Technical Report NREL/EL-500-38230, 2005.
  • 2
    Øye S, FLEX4 Simulation of wind turbine dynamics. Proceedings of the IEA 28th Meeting of Experts on State of the Art of Aeroelastic Codes for Wind Turbine Calculations, Lyngby, Denmark, 1996; 7176.
  • 3
    Larsen TJ, Hansen AM, How 2 HAWC2, the user's manual. Technical Report Risø-R-1597(ver. 4-3)(EN), 2012.
  • 4
    Barlas TK, van der Veen GJ, van Kuik GAM. Model predictive control for wind turbines with distributed active flaps: incorporating inflow signals and actuator constraints. Wind Energy 2012; 15: 757771, DOI: 10.1002/we.503.
  • 5
    Bossanyi EA, GH bladed theory manual. Technical Report 282/BR/009, 2003.
  • 6
    Jonkman J, Musial W, Offshore code comparison collaboration (OC3) for IEA Task 23 offshore wind technology and deployment. Technical Report NREL/TP-5000-48191, 2010.
  • 7
    Passon P, Kühn M, Butterfield S, Jonkman J, Camp T, Larsen TJ. OC3 - benchmark exercise of aero-elastic offshore wind turbine codes. Journal of Physics Conference Series 2007; 75: 012071, DOI: 10.1088/1742-6596/75/1/012071.
  • 8
    Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences 2006; 42: 285330, DOI: 10.1016/j.paerosci.2006.10.002.
  • 9
    Hansen MH, Gaunaa M, Madsen HA, A Beddoes–Leishman type dynamic stall model in state-space and indicial formulations. Technical Report Risø-R-1354(EN), 2004.
  • 10
    Voutsinas SG. Vortex methods in aeronautics: how to make things work. International Journal of Computational Fluid Dynamics 2006; 20: 318, DOI: 10.1080/10618560600566059.
  • 11
    Hesse H, Palacios R. Consistent structural linearisation in flexible-body dynamics with large rigid-body motion. Computers and Structures 2012; 110-111: 114, DOI: 10.1016/j.compstruc.2012.05.011.
  • 12
    Bossanyi EA. Individual blade pitch control for load reduction. Wind Energy 2003; 6: 119128, DOI: 10.1002/we.76.
  • 13
    Lackner MA, van Kuik G. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control. Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 2009.
  • 14
    Bottasso CL, Campagnolo F, Croce A, Tibaldi C. Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 2013; 16: 11491166, DOI: 10.1002/we.1543.
  • 15
    Frederick M, Kerrigan EC, Graham JMR. Gust alleviation using rapidly deployed trailing-edge flaps. Journal of Wind Engineering and Industrial Aerodynamics 2010; 98: 712723, DOI: 10.1016/j.jweia.2010.06.005.
  • 16
    Riziotis VA, Voutsinas S, Aero-elastic modeling of the active flap concept for load control. Proceedings of the EWEC, Brussels, Belgium, 2008.
  • 17
    Barlas TK, van Kuik GAM, Aeroelastic modeling and comparison of advanced active flap control concepts for load reduction on the UPWIND 5-MW wind turbine. Proceedings of the EWEC, Marseille, France, 2009.
  • 18
    Wilson DG, Resor BR, Berg DE, Barlas T, van Kuik GAM, Active aerodynamic blade distributed flap control design procedure for load reduction on the UPWIND 5-MW wind turbine. Proceedings of the 48th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 2010.
  • 19
    Andersen PB, Gaunaa M, Bak C, Buhl T, Load alleviation on wind turbine blades using variable airfoil geometry. Proceedings of the EWEC, Athens, Greece, 2006.
  • 20
    Andersen PB, Henriksen L, Gaunaa M, Bak C, Buhl T. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors. Wind Energy 2010; 13: 193206, DOI: 10.1002/we.371.
  • 21
    Gaunaa M. 2006. Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion. Technical Report Risø-R-1478(EN).
  • 22
    van Dam C, Chow R, Zayas JR, Berg DE. Computational investigations of small deploying tabs and flaps for aerodynamic load control. Journal of Physics 2007; 75: 012027, DOI: 10.1088/1742-6596/75/1/012027.
  • 23
    Marrant BAH, van Holten T, Concept study of smart rotor blades for large offshore wind turbines. Proceedings of OWEMES, Rome, Italy, 2006.
  • 24
    Wilson DG, Berg DE, Barone MF, Berg JC, Resor BR, Lobitz DW, Active aerodynamics blade control design for load reduction on large wind turbines. Proceedings of the EWEC, Marseille, France, 2009.
  • 25
    Barlas TK, van Kuik GAM. Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences 2010; 46: 127, DOI: 10.1016/j.paerosci.2009.08.002.
  • 26
    Castaignet D, Barlas TK, Buhl T, Poulsen NK, Wedel-Heinen JJ, Olesen NA, Bak C, Kim T. Full-scale test of trailing edge flaps on a vestas V27 wind turbine: active load reduction and system identification. Wind Energy 2014; 17(4):549564, DOI: 10.1002/we.1589.
  • 27
    Barlas TK, van Wingerden W, Hulskamp AW, van Kuik GAM, Bersee HEN. Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements. Wind Energy 2013; 16: 12871301, DOI: 10.1002/we.1560.
  • 28
    Berg D, Berg J, Wilson D, White J, Resor B, Rumsey M, Design, fabrication, assembly and initial testing of a SMART rotor. Proceedings of the 29th ASME Wind Energy Symposium, Orlando, FL, USA, 2011.
  • 29
    Berg J, Berg D, White J, Fabrication, integration, and initial testing of a SMART rotor. Proceedings of the 50th AIAA Aerospace Sciences Meeting, Nashville, TN, USA, 2012.
  • 30
    Ng BF, Palacios R, Graham JMR, Kerrigan EC, Robust control synthesis for gust load alleviation from large aeroelastic models with relaxation of spatial discretisation. Proceedings of the EWEC, Copenhagen, Denmark, 2012.
  • 31
    Palacios R, Murua J, Cook R. Structural and aerodynamic models in the nonlinear flight dynamics of very flexible aircraft. AIAA Journal 2010; 48: 25592648, DOI: 10.2514/1.J050513.
  • 32
    Murua J, Palacios R, Graham JMR. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences 2012; 55: 4672, DOI: 10.1016/j.paerosci.2012.06.001.
  • 33
    Murua J, Palacios R, Graham JMR. Assessment of wake-tail interference effects on the dynamics of flexible aircraft. AIAA Journal 2012; 50: 15751585, DOI: 10.2514/1.J051543.
  • 34
    Simo JC, Vu-Quoc L. On the dynamics in space of rods undergoing large motions: a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering 1988; 66: 125161, DOI: 10.1016/0045-7825(88)90073-4.
  • 35
    Géradin M, Cardona A. Flexible Multibody Dynamics: A Finite Element Approach. John Wiley: Chichester, UK, 2001.
  • 36
    Palacios R, Cesnik C. Cross-sectional analysis of non-homogeneous anisotropic active slender structures. AIAA Journal 2005; 43: 26242638, DOI: 10.2514/1.12451.
  • 37
    Katz J, Plotkin A. Low Speed Aerodynamics, 2nd Ed, Cambridge Aerospace Series. Cambridge University Press: Cambridge, UK; New York, 2001.
  • 38
    Simpson RJS, Palacios R, Murua J. Induced drag calculations in the unsteady vortex-lattice method. AIAA Journal 2013; 51: 17751779, DOI: 10.2514/1.J052136.
  • 39
    Åström KJ, Murray RM. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press: Princeton; Oxford, UK, 2008.
  • 40
    Campbell CW. Monte Carlo turbulence simulation using rational approximations to von Kármán spectra. AIAA Journal 1986; 24: 6266, DOI: 10.2514/3.9223.
  • 41
    Maciejowski JM. Multivariable Feedback Design. Addison-Wesley: Wokingham, UK, 1989.
  • 42
    Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design 2nd edn. John Wiley: Chichester, England; Hoboken, NJ, 2005.
  • 43
    Bielawa RL. Rotary Wing Structural Dynamics and Aeroelasticity. American Institute of Aeronautics and Astronautics: Reston, VA, 2006.
  • 44
    Goland M. The flutter of a uniform cantilevered wing. Journal of Applied Mechanics 1945; 12: A197A208.
  • 45
    Hesse H, Palacios R, Model reduction in flexible-aircraft dynamics with large rigid-body motion. Proceedings of the 54th AIAA Structures, Structural Dynamics, and Materials Conference, Boston, MA, USA, 2013.
  • 46
    Wang Z, Chen PC, Liu DD, Mook DT, Patil MJ, Time domain nonlinear aeroelastic analysis for hale wings. Proceedings of the 47th AIAA Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, USA, 2006.
  • 47
    Hansen MH. Aeroelastic instability problems for wind turbines. Wind Energy 2007; 10: 551577, DOI: 10.1002/we.242.
  • 48
    Bir GS, Jonkman J. 2007. Aeroelastic instabilities of large offshore and onshore wind turbines. Technical Report NREL/CP-500-41804.
  • 49
    Jonkman J, Butterfield S, Musial W, Scott G, Definition of a 5-MW wind turbine for offshore system development. Technical Report NREL/TP-500-38060, 2009.
  • 50
    Bak C, Research in aeroelasticity EFP-2006. Technical Report Risø-R-1611(EN), 2007.
  • 51
    Chattot J-J. Helicoidal vortex model for wind turbine aeroelastic simulation. Computers and Structures 2007; 85: 10721079, DOI: 10.1016/j.compstruc.2006.11.013.
  • 52
    Berg DE, Wilson DG, Resor BR, Barone MF, Berg JC, Active aerodynamic blade load control impacts on utility-scale wind turbines. Proceedings of the AWEA Windpower, Chicago, IL, USA, 2009.
  • 53
    Jones BL, Kerrigan EC. When is the discretization of a spatially distributed system good enough for control? Automatica 2010; 46: 14621468, DOI: 10.1016/j.automatica.2010.06.001.
  • 54
    Hoblit FM. Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series: Washington, DC, 2001.