SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Pai Li, Xiaohong Guan, Jiang Wu, Aggregated wind power generation probabilistic forecasting based on particle filter, Energy Conversion and Management, 2015, 96, 579

    CrossRef

  2. 2
    James W. Taylor, Jooyoung Jeon, Forecasting wind power quantiles using conditional kernel estimation, Renewable Energy, 2015, 80, 370

    CrossRef

  3. 3
    A. Carpinone, M. Giorgio, R. Langella, A. Testa, Markov chain modeling for very-short-term wind power forecasting, Electric Power Systems Research, 2015, 122, 152

    CrossRef

  4. 4
    Peng Kou, Deliang Liang, Lin Gao, Jianyong Lou, Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning, Energy Conversion and Management, 2015, 89, 298

    CrossRef

  5. 5
    Yao Zhang, Jianxue Wang, Xu Luo, Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel, Energy Conversion and Management, 2015, 96, 440

    CrossRef

  6. 6
    Andrew Mercer, Jamie Dyer, A New Scheme for Daily Peak Wind Gust Prediction Using Machine Learning, Procedia Computer Science, 2014, 36, 593

    CrossRef

  7. 7
    Peng Kou, Feng Gao, A sparse heteroscedastic model for the probabilistic load forecasting in energy-intensive enterprises, International Journal of Electrical Power & Energy Systems, 2014, 55, 144

    CrossRef

  8. 8
    Edgardo D. Castronuovo, Julio Usaola, Ricardo Bessa, Manuel Matos, I.C. Costa, L.  Bremermann, Jesus Lugaro, George Kariniotakis, An integrated approach for optimal coordination of wind power and hydro pumping storage, Wind Energy, 2014, 17, 6
  9. 9
    Ashkan Zarnani, Petr Musilek, Jana Heckenbergerova, Clustering numerical weather forecasts to obtain statistical prediction intervals, Meteorological Applications, 2014, 21, 3
  10. 10
    Jaesung Jung, Robert P. Broadwater, Current status and future advances for wind speed and power forecasting, Renewable and Sustainable Energy Reviews, 2014, 31, 762

    CrossRef

  11. 11
    E. İzgi, A. Öztopal, B. Yerli, M. K. Kaymak, A. D. Şahin, Determination of the Representative Time Horizons for Short-term Wind Power Prediction by Using Artificial Neural Networks, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36, 16, 1800

    CrossRef

  12. 12
    Javier Saez-Gallego, Juan M. Morales, Henrik Madsen, Tryggvi Jónsson, Determining reserve requirements in DK1 area of Nord Pool using a probabilistic approach, Energy, 2014, 74, 682

    CrossRef

  13. 13
    Peng Kou, Deliang Liang, Feng Gao, Lin Gao, Probabilistic wind power forecasting with online model selection and warped gaussian process, Energy Conversion and Management, 2014, 84, 649

    CrossRef

  14. 14
    Jakob W. Messner, Achim Zeileis, Jochen Broecker, Georg J. Mayr, Probabilistic wind power forecasts with an inverse power curve transformation and censored regression, Wind Energy, 2014, 17, 11
  15. 15
    Yao Zhang, Jianxue Wang, Xifan Wang, Review on probabilistic forecasting of wind power generation, Renewable and Sustainable Energy Reviews, 2014, 32, 255

    CrossRef

  16. 16
    Audun Botterud, Renewable Energy Integration, 2014,

    CrossRef

  17. 17
    S. Alessandrini, S. Sperati, P. Pinson, A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data, Applied Energy, 2013, 107, 271

    CrossRef

  18. 18
    Tony Chang, Erik Nielsen, William Auberle, Frederic I. Solop, A quantitative method to analyze the quality of EIA information in wind energy development and avian/bat assessments, Environmental Impact Assessment Review, 2013, 38, 142

    CrossRef

  19. 19
    Brandon Mauch, Jay Apt, Pedro M. S. Carvalho, Mitchell J. Small, An effective method for modeling wind power forecast uncertainty, Energy Systems, 2013, 4, 4, 393

    CrossRef

  20. 20
    Miriam Bueno-Lorenzo, M. Ángeles Moreno, Julio Usaola, Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case, Energy Policy, 2013, 62, 1010

    CrossRef

  21. 21
    Z. Zhou, A. Botterud, J. Wang, R.J. Bessa, H. Keko, J. Sumaili, V. Miranda, Application of probabilistic wind power forecasting in electricity markets, Wind Energy, 2013, 16, 3
  22. 22
    Arthur Bossavy, Robin Girard, George Kariniotakis, Forecasting ramps of wind power production with numerical weather prediction ensembles, Wind Energy, 2013, 16, 1
  23. 23
    J. McLean Sloughter, Tilmann Gneiting, Adrian E. Raftery, Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging, Monthly Weather Review, 2013, 141, 6, 2107

    CrossRef

  24. 24
    Peng Kou, Feng Gao, Xiaohong Guan, Sparse online warped Gaussian process for wind power probabilistic forecasting, Applied Energy, 2013, 108, 410

    CrossRef

  25. 25
    M. Ángeles Moreno, Miriam Bueno, Julio Usaola, Evaluating risk-constrained bidding strategies in adjustment spot markets for wind power producers, International Journal of Electrical Power & Energy Systems, 2012, 43, 1, 703

    CrossRef

  26. 26
    Ricardo J. Bessa, V. Miranda, A. Botterud, Z. Zhou, J. Wang, Time-adaptive quantile-copula for wind power probabilistic forecasting, Renewable Energy, 2012, 40, 1, 29

    CrossRef

  27. 27
    Gregor Giebel, Michael Denhard, Electric Power Systems, 2012,

    CrossRef

  28. 28
    Geoffrey Pritchard, Short-term variations in wind power: Some quantile-type models for probabilistic forecasting, Wind Energy, 2011, 14, 2
  29. 29
    J. Wang, A. Botterud, R. Bessa, H. Keko, L. Carvalho, D. Issicaba, J. Sumaili, V. Miranda, Wind power forecasting uncertainty and unit commitment, Applied Energy, 2011, 88, 11, 4014

    CrossRef

  30. 30
    Pierre Pinson, George Kariniotakis, Conditional Prediction Intervals of Wind Power Generation, IEEE Transactions on Power Systems, 2010, 25, 4, 1845

    CrossRef

  31. 31
    J. P. S. Catalao, H. M. I. Pousinho, V. M. F. Mendes, Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal, IEEE Transactions on Sustainable Energy, 2010,

    CrossRef

  32. 32
    Thordis L. Thorarinsdottir, Tilmann Gneiting, Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression, Journal of the Royal Statistical Society: Series A (Statistics in Society), 2010, 173, 2
  33. 33
    J. McLean Sloughter, Tilmann Gneiting, Adrian E. Raftery, Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging, Journal of the American Statistical Association, 2010, 105, 489, 25

    CrossRef

  34. 34
    Antonis G. Tsikalakis, Nikos D. Hatziargyriou, Yiannis A. Katsigiannis, Pavlos S. Georgilakis, Impact of wind power forecasting error bias on the economic operation of autonomous power systems, Wind Energy, 2009, 12, 4
  35. 35
    Jan Kloppenborg Møller, Henrik Aalborg Nielsen, Henrik Madsen, Time-adaptive quantile regression, Computational Statistics & Data Analysis, 2008, 52, 3, 1292

    CrossRef

  36. 36
    H. Jonsdottir, H. Aa Nielsen, H. Madsen, J. Eliasson, O. P. Palsson, M. K. Nielsen, Conditional parametric models for storm sewer runoff, Water Resources Research, 2007, 43, 5
  37. 37
    Pierre Pinson, Henrik Aa. Nielsen, Jan K. Møller, Henrik Madsen, George N. Kariniotakis, Non-parametric probabilistic forecasts of wind power: required properties and evaluation, Wind Energy, 2007, 10, 6