SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Peng Kou, Deliang Liang, Lin Gao, Jianyong Lou, Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning, Energy Conversion and Management, 2015, 89, 298

    CrossRef

  2. 2
    Andrew Mercer, Jamie Dyer, A New Scheme for Daily Peak Wind Gust Prediction Using Machine Learning, Procedia Computer Science, 2014, 36, 593

    CrossRef

  3. 3
    Peng Kou, Feng Gao, A sparse heteroscedastic model for the probabilistic load forecasting in energy-intensive enterprises, International Journal of Electrical Power & Energy Systems, 2014, 55, 144

    CrossRef

  4. 4
    Abbas Khosravi, Saeid Nahavandi, An optimized mean variance estimation method for uncertainty quantification of wind power forecasts, International Journal of Electrical Power & Energy Systems, 2014, 61, 446

    CrossRef

  5. 5
    Ashkan Zarnani, Petr Musilek, Jana Heckenbergerova, Clustering numerical weather forecasts to obtain statistical prediction intervals, Meteorological Applications, 2014, 21, 3
  6. 6
    Jaesung Jung, Robert P. Broadwater, Current status and future advances for wind speed and power forecasting, Renewable and Sustainable Energy Reviews, 2014, 31, 762

    CrossRef

  7. 7
    E. B. Iversen, J. M. Morales, J. K. Møller, H. Madsen, Probabilistic forecasts of solar irradiance using stochastic differential equations, Environmetrics, 2014, 25, 3
  8. 8
    Andrea Staid, Pierre Pinson, Seth D. Guikema, Probabilistic maximum-value wind prediction for offshore environments, Wind Energy, 2014, 17, 12
  9. 9
    Peng Kou, Deliang Liang, Feng Gao, Lin Gao, Probabilistic wind power forecasting with online model selection and warped gaussian process, Energy Conversion and Management, 2014, 84, 649

    CrossRef

  10. 10
    Jakob W. Messner, Achim Zeileis, Jochen Broecker, Georg J. Mayr, Probabilistic wind power forecasts with an inverse power curve transformation and censored regression, Wind Energy, 2014, 17, 11
  11. 11
    Yao Zhang, Jianxue Wang, Xifan Wang, Review on probabilistic forecasting of wind power generation, Renewable and Sustainable Energy Reviews, 2014, 32, 255

    CrossRef

  12. 12
    Abbas Khosravi, Saeid Nahavandi, Doug Creighton, A neural network-GARCH-based method for construction of Prediction Intervals, Electric Power Systems Research, 2013, 96, 185

    CrossRef

  13. 13
    Z. Zhou, A. Botterud, J. Wang, R.J. Bessa, H. Keko, J. Sumaili, V. Miranda, Application of probabilistic wind power forecasting in electricity markets, Wind Energy, 2013, 16, 3
  14. 14
    Arthur Bossavy, Robin Girard, George Kariniotakis, Forecasting ramps of wind power production with numerical weather prediction ensembles, Wind Energy, 2013, 16, 1
  15. 15
    J. McLean Sloughter, Tilmann Gneiting, Adrian E. Raftery, Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging, Monthly Weather Review, 2013, 141, 6, 2107

    CrossRef

  16. 16
    Peng Kou, Feng Gao, Xiaohong Guan, Sparse online warped Gaussian process for wind power probabilistic forecasting, Applied Energy, 2013, 108, 410

    CrossRef

  17. You have free access to this content17
    Pierre Pinson, Henrik Madsen, Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models, Journal of Forecasting, 2012, 31, 4
  18. 18
    P. Pinson, R. Girard, Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 2012, 96, 12

    CrossRef

  19. 19
    Fannar Örn Thordarson, Anders Breinholt, Jan Kloppenborg Møller, Peter Steen Mikkelsen, Morten Grum, Henrik Madsen, Evaluation of probabilistic flow predictions in sewer systems using grey box models and a skill score criterion, Stochastic Environmental Research and Risk Assessment, 2012, 26, 8, 1151

    CrossRef

  20. 20
    Qing Cao, Bradley T. Ewing, Mark A. Thompson, Forecasting wind speed with recurrent neural networks, European Journal of Operational Research, 2012, 221, 1, 148

    CrossRef

  21. 21
    Ricardo J. Bessa, V. Miranda, A. Botterud, Z. Zhou, J. Wang, Time-adaptive quantile-copula for wind power probabilistic forecasting, Renewable Energy, 2012, 40, 1, 29

    CrossRef

  22. 22
    Pierre Pinson, Renate Hagedorn, Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations, Meteorological Applications, 2012, 19, 4
  23. 23
    P. Pinson, Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions, Journal of the Royal Statistical Society: Series C (Applied Statistics), 2012, 61, 4
  24. 24
    Álvaro Jaramillo Duque, Edgardo D. Castronuovo, Ismael Sánchez, Julio Usaola, Optimal operation of a pumped-storage hydro plant that compensates the imbalances of a wind power producer, Electric Power Systems Research, 2011, 81, 9, 1767

    CrossRef

  25. 25
    Manuel A. Matos, R. J. Bessa, Setting the Operating Reserve Using Probabilistic Wind Power Forecasts, IEEE Transactions on Power Systems, 2011, 26, 2, 594

    CrossRef

  26. 26
    Pierre Pinson, George Kariniotakis, Conditional Prediction Intervals of Wind Power Generation, IEEE Transactions on Power Systems, 2010, 25, 4, 1845

    CrossRef

  27. 27
    J. P. S. Catalao, H. M. I. Pousinho, V. M. F. Mendes, Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Forecasting in Portugal, IEEE Transactions on Sustainable Energy, 2010,

    CrossRef

  28. 28
    J. McLean Sloughter, Tilmann Gneiting, Adrian E. Raftery, Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging, Journal of the American Statistical Association, 2010, 105, 489, 25

    CrossRef

  29. 29
    Pierre Pinson, Patrick McSharry, Henrik Madsen, Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation, Quarterly Journal of the Royal Meteorological Society, 2010, 136, 646
  30. 30
    E. García-Bustamante, J. F. González-Rouco, P. A. Jiménez, J. Navarro, J. P. Montávez, A comparison of methodologies for monthly wind energy estimation, Wind Energy, 2009, 12, 7
  31. 31
    Pierre Pinson, Henrik Madsen, Ensemble-based probabilistic forecasting at Horns Rev, Wind Energy, 2009, 12, 2
  32. 32
    Pierre Pinson, Henrik Madsen, Henrik Aa. Nielsen, George Papaefthymiou, Bernd Klöckl, From probabilistic forecasts to statistical scenarios of short-term wind power production, Wind Energy, 2009, 12, 1
  33. 33
    Antonis G. Tsikalakis, Nikos D. Hatziargyriou, Yiannis A. Katsigiannis, Pavlos S. Georgilakis, Impact of wind power forecasting error bias on the economic operation of autonomous power systems, Wind Energy, 2009, 12, 4
  34. 34
    P. Pinson, H.Aa. Nielsen, H. Madsen, G. Kariniotakis, Skill forecasting from ensemble predictions of wind power, Applied Energy, 2009, 86, 7-8, 1326

    CrossRef

  35. 35
    B. Klöckl, G. Papaefthymiou, P. Pinson, Probabilistic tools for planning and operating power systems with distributed energy storage, e & i Elektrotechnik und Informationstechnik, 2008, 125, 12, 460

    CrossRef