Load Mitigation with Bending/Twist-coupled Blades on Rotors using Modern Control Strategies


  • Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000


The prospect of installing blades that twist as they bend and/or extend on horizontal axis wind turbines provides opportunities for enhanced energy capture and/or load mitigation. Although this coupling could be achieved in either an active or a passive manner, the passive approach is much more attractive owing to its simplicity and economy. As an example, a blade design might employ coupling between bending and twisting, so that as the blade bends owing to the action of the aerodynamic loads, it also twists, modifying the aerodynamic performance in some way. For reducing loads the blades are designed to twist towards feather as they bend. For variable-speed pitch-controlled rotors, dynamic computer simulations with turbulent inflow show that twist coupling substantially decreases fatigue damage over all wind speeds, without reducing average power. Maximum loads also decrease modestly. For constant-speed stall-controlled and variable-speed stall-controlled rotors, significant decreases in fatigue damage are observed at the lower wind speeds and smaller decreases at the higher wind speeds. Maximum loads also decrease slightly. As a general observation, whenever a rotor is operating in the linear aerodynamic range (lower wind speeds for stall control and all wind speeds for pitch control), substantial reductions in fatigue damage are realized. Copyright © 2002 John Wiley & Sons, Ltd.