• 1
    Conway BE. Electrochemical Supercapacitors, vol. 1. New York: Kluwer Academic/Plenum Publishers; 1999.
  • 2
    Beguin F, Frackowiak E. Carbons for Electrochemical Energy Storage and Conversion Systems. Boca Raton, FL: CRC Press; 2010.
  • 3
    Beguin F, Frackowiak E. Supercapacitors: Materials, Systems, and Applications. Berlin, Germany: Wiley-VCH; 2013.
  • 4
    Frumkin A, Reichstein S, Kulvarskaja R. Ion adsorption in aqueous surfaces. Kolloid-Zeitschrift 1926, 40:911.
  • 5
    Frumkin A. Affectation of the adsorption of neutral molecules by means of electrical field. Zeitschrift Phys 1926, 35:792802.
  • 6
    Conway BE, Gileadi E, Dzieciuch M. Deterination of real surface areas and Temkin isotherm parameters from analysis of adsorption pseudocapacity curves. J Electrochem Soc 1963, 110:C68C68.
  • 7
    Zheng JP. Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem Solid State Lett 1999, 2:359361.
  • 8
    Conway BE. Transition from supercapacitor to battery behavior in electrochemical energy storage. J Electrochem Soc 1991, 138:15391548.
  • 9
    Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes. Electrochim Acta 2006, 51:55675580.
  • 10
    Pandey S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Anal Chim Acta 2006, 556:3845.
  • 11
    Lee SG. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun 2006, 10:10491063.
  • 12
    Yushin G, Hoffman EN, Barsoum MW, Gogotsi Y, Howell CA, Sanderman SR, Phillips GJ, Lloyd AW, Mikhalovsky SV. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials 2006, 27:57555762.
  • 13
    Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical Micro- and Mesoporous Carbide-Derived Carbon as a High-Performance Electrode Material in Supercapacitor. Small 2011, 7:11081117.
  • 14
    Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G. Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Chem Soc 2010, 132:3252.
  • 15
    Evanoff K, Magasinski A, Yang J. NanoSi-coated graphene granules as anodes for Li-ion batteries. Adv. Energy Mater. 2011, 1:495498.
  • 16
    Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 2007, 45:25112518.
  • 17
    Boukhalfa S, He L, Melnichenko YB, Yushin G. Small angle neutron scattering for the in-situ probing of ion adsorption inside micropores. Angew Chem Int Ed 2013, 52:46184622.
  • 18
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G. Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 2012, 24:533.
  • 19
    Boukhalfa S, Evanoff K, Yushin G. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ Sci 2012, 5:68726879.
  • 20
    Cooney DO. Activated Charcoal: Antidotal and other Medical Uses. New York: Dekker; 1980.
  • 21
    Baker FS, Miller CE, Repik ED. Kirk-Othmer Encyclopedia of Chemical Technology, vol. 4. 4 ed. New York: John Wiley; 1992, 10151037.
  • 22
    Marsh H. Activated Carbon Compendium: A Collection of Papers from the Journal Carbon 1996–2000. Elsevier; 2001, Gulf Publishing, Texas, USA.
  • 23
    Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ. Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 2007, 111:75277531.
  • 24
    Wei L, Yushin G. Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon 2011, 49:48304838.
  • 25
    Wei L, Yushin G. Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. J Power Sources 2011, 196:40724079.
  • 26
    Li QY, Wang HQ, Dai QF, Yang JH, Zhong YL. Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ionics 2008, 179:269273.
  • 27
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 2011, 1:356361.
  • 28
    Balathanigaimani MS, Shim WG, Lee M-J, Kim C, Lee J-W, Moon H. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 2008, 10:868871.
  • 29
    Kierzek K, Frackowiak E, Lota G, Gryglewicz G, Machnikowski J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation (vol 49, pg 515, 2004). Electrochim Acta 2004, 49:11691170.
  • 30
    Zhai D, Li B, Du H, Wang G, Kang F. The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors. J Solid State Electrochem 2011, 15:787794.
  • 31
    Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 2010, 195:912918.
  • 32
    Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 2003, 41:17651775.
  • 33
    Xu B, Chen YF, Wei G, Cao GP, Zhang H, Yang YS. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater Chem Phys 2010, 124:504509.
  • 34
    Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 2008, 10:15941597.
  • 35
    Li X, Han C, Chen X, Shi C. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous Mesoporous Mater 2010, 131:303309.
  • 36
    Wang R, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO(2) capture performance. ACS Appl Mater Interf 2012, 4:58005806.
  • 37
    Lee SG, Park KH, Shim WG, Balathanigaimani MS, Moon H. Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees. J Ind Eng Chem 2011, 17:450454.
  • 38
    Juntao Zhang LG, Kang S, Jianchun J, Xiaogang Z. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application. J Solid State Electrochem 2012, 16.
  • 39
    Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marin F, Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour Technol 2012, 111:185190.
  • 40
    Ding L, Wang ZC, Li YN, Du YL, Liu HQ, Guo YP. A novel hydrochar and nickel composite for the electrochemical supercapacitor electrode material. Mater Lett 2012, 74:111114.
  • 41
    Li Z, Zhang L, Amirkhiz BS, Tan XH, Xu ZW, Wang HL, Olsen BC, Holt CM, Mitlin D. Carbonized chicken eggshell membranes with 3d architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2012, 2:431437.
  • 42
    Chun S-E, Whitacre JF. The evolution of electrochemical functionality of carbons derived from glucose during pyrolysis and activation. Electrochim Acta 2012, 60:392400.
  • 43
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 2011, 22:827834.
  • 44
    Yan J, Wei T, Qiao WM, Fan ZJ, Zhang LJ, Li TY, Zhao QK. A high-performance carbon derived from polyaniline for supercapacitors. Electrochem Commun 2010, 12:12791282.
  • 45
    Xiang X, Liu EH, Li LM, Yang YJ, Shen HJ, Huang ZZ, Tian YY. Activated carbon prepared from polyaniline base by K(2)CO(3) activation for application in supercapacitor electrodes. J Solid State Electrochem 2011, 15:579585.
  • 46
    Eliad L, Pollak E, Levy N, Salitra G, Soffer A, Aurbach D. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl Phys A 2006, 82:607613.
  • 47
    Hasegawa G. Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-Containing activated carbon with high surface area. J Mater Chem 2011, 21:20602063.
  • 48
    Kim K-S, Park S-J. Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance. Microporous Mesoporous Mater 2012, 163:140146.
  • 49
    Guo SL, Wang F, Chen H, Ren H, Wang R, Pan X. Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes. J Solid State Electrochem 2012, 16:33553362.
  • 50
    Jänes A, Kurig H, Lust E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 2007, 45:12261233.
  • 51
    Yang H, Yoshio M, Isono K, Kuramoto R. Improvement of commercial activated carbon and its application in electric double layer capacitors. Electrochem Solid-State Lett 2002, 5:A141.
  • 52
    Teng H, Chien Y-JC. To Hsieh performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon 2001, 39.
  • 53
    Weng T-C, Teng H. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors. J Electrochem Soc 2001, 148:A368.
  • 54
    Kim YJ, Horie Y, Ozaki S, Matsuzawa Y, Suezaki H, Kim C, Miyashita N, Endo M. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 2004, 42:14911500.
  • 55
    Alonso A, Ruiz V, Blanco C, Santamaria R, Granda M, Menendez R, Jager SGE. Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon 2006, 44:441446.
  • 56
    Huang C-W, Hsieh C-T, Kuo P-L, Teng H. Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. J Mater Chem 2012, 22:7314.
  • 57
    Denisa Hulicova-Jurcakova AMP, Poddubnaya OI, Suarez-Garcia F, Juan MD T, Gao Qing L. Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 2009, 131.
  • 58
    Xiaoxia XEL, Huang Z, Shen H, Tian Y, Xiao C, Yang J, Mao Z. Preparation of activited carbon from polyaniline by zinc chloride activation as supercapacitor electrodes. J Solid State Electrochem 2011, 15.
  • 59
    Nandhini R, Mini PA, Avinash B, Nair SV, Subramanian KRV. Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Mater Lett 2012, 87:165168.
  • 60
    Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008, 7:845854.
  • 61
    Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 2003, 150:A292A300.
  • 62
    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 2001, 101:109116.
  • 63
    Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39:937950.
  • 64
    Azaïs P, Duclaux L, Florian P, Maasiot D, Lillo-Rodenas MA, L-Solano A, Peres J-P, Jehoulet C, Beguin F. Causes of supercapacitors ageing in organic electrolyte. J Power Sources 2007, 171:10461053.
  • 65
    Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 2009, 19:18001809.
  • 66
    Endo M, Kim YJ, Maeda T, Koshiba K, Katayam K. Morphological effect on the electrochemical behavior of electric double-layer capacitors. J Mater Res 2001, 16:34023410.
  • 67
    Chen H, Wang F, Tong S, Guo S, Pan X. Porous carbon with tailored pore size for electric double layer capacitors application. Appl Surf Sci 2012, 258:60976102.
  • 68
    Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sources 2005, 142:382388.
  • 69
    Zhang Q, Rong JP, Ma DS, Wei BQ. The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ Sci 2011, 4:21522159.
  • 70
    Hung KS, Masarapu C, Ko TH, Wei BQ. Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J Power Sources 2009, 193:944949.
  • 71
    Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H, Dresselhaus MS. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J Electrochem Soc 2001, 148:A910.
  • 72
    Taer E, Deraman M, Talib IA, Awitdrus A, Hashmi SA, Umar AA. Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int J Electrochem Sci 2011, 6:33013315.
  • 73
    Seo MK, Park SJ. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater Sci Eng B 2009, 164:106111.
  • 74
    Nakagawa H, Shudo A, Miura K. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes. J Electrochem Soc 2000, 147:3842.
  • 75
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 2009, 19:438447.
  • 76
    Zhang X, Wang XY, Jiang LL, Wu H, Wu C, Su JC. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J Power Sources 2012, 216:290296.
  • 77
    Han S-J, Kim Y-H, Kim K-S, Park S-J. A study on high electrochemical capacitance of ion exchange resin-based activated carbons for supercapacitor. Curr Appl Phys 2012, 12:10391044.
  • 78
    Babel K, Jurewicz K. KOH activated carbon fabrics as supercapacitor material. J Phys Chem Solids 2004, 65:275280.
  • 79
    Ruiz V, Santamaria R, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, Rodriguez-Reinoso F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47:195200.
  • 80
    Hsieh CT, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40:667674.
  • 81
    Ishikawa M, Sakamoto A, Morita M, Matsuda Y, Ishida K. Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J Power Sources 1996, 60:233238.
  • 82
    Carriazo D, Pico F, Gutierrez MC, Rubio F, Rojo JM, Monte F. Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 2010, 20:773.
  • 83
    Raymundo-Pinero E, Cadek M, Beguin F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Adv Funct Mater 2009, 19:10321039.
  • 84
    Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 2006, 18:18771882.
  • 85
    Kim BH, Yang KS, Woo HG, Oshida K. Supercapacitor performance of porous carbon nanofiber composites prepared by electrospinning polymethylhydrosiloxane (PMHS)/polyacrylonitrile (PAN) blend solutions. Synth Met 2011, 161:12111216.
  • 86
    Endo M, Kim YJ, Takeda T, Maeda T, Hayashi T, Koshiba K, Hra H, Dresselhaus MS. Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte. J Electrochem Soc 2001, 148:A1135.
  • 87
    Hao GP, Mi J, Li D, Qu WH, Wu TJ, Li WC, Lu AH. A comparative study of nitrogen-doped hierarchical porous carbon monoliths as electrodes for supercapacitors. New Carbon Mater 2011, 26:197203.
  • 88
    Garcia-Gomez A, Miles P, Centeno TA, Rojo JM. Uniaxially oriented carbon monoliths as supercapacitor electrodes. Electrochim Acta 2010, 55:85398544.
  • 89
    Sun XZ, Zhang X, Zhang HT, Zhang DC, Ma YW. A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J Solid State Electrochem 2012, 16:25972603.
  • 90
    Ma C, Song Y, Shi JL, Zhang DQ, Zhong M, Guo QG, Liu L. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors. Mater Lett 2012, 76:211214.
  • 91
    Kim C, Park S-H, Lee W-J, Yang K-S. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim Acta 2004, 50:877881.
  • 92
    Kim YJ, Matsuzawa Y, Ozaki S, Park KC, Kim C, Endo M, Yoshida H, Masuda G, Sato T, Dresselhaus MS. High energy-density capacitor based on ammonium salt type ionic liquids and their mixing effect by propylene carbonate. J Electrochem Soc 2005, 152:A710A715.
  • 93
    Xu B, Wu F, Chen RJ, Cao GP, Chen S, Yang YS. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 2010, 195:21182124.
  • 94
    Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim Acta 2005, 50:22272231.
  • 95
    Balducci A, Dugas R, Taberna PL, Simon P, Plee D, Mastragostino M, Passerini S. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 2007, 165:922927.
  • 96
    Liang YY, Schwab MG, Zhi LJ, Mugnaioli E, Kolb U, Feng XL, Mullen K. Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. J Am Chem Soc 2010, 132:1503015037.
  • 97
    Timperman L, Skowron P, Boisset A, Galiano H, Lemordant D, Frackowiak E, Beguin F, Anouti M. Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 2012, 14:81998207.
  • 98
    Korenblit Y, Kajdos A, West WC, Smart MC, Brandon EJ, Kvit A, Jagiello J, Yushin G. In-situ studies of ion transport in microporous supercapacitor electrodes at ultra-low temperatures. Adv Funct Mater 2012, 22:16551662.
  • 99
    Pech D, Brunet M, Durou H, Huang PH, Mochalin V, Gogotsi Y, Taberna P-L, Simon P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 2010, 5:651654.
  • 100
    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332:15371541.
  • 101
    Lu W, Yushin G. Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano 2013, 7:64986506.
  • 102
    Lewandowski A, Olejniczak A, Galinski M, Stepniak I. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 2010, 195:58145819.
  • 103
    McDonough JR, Choi JW, Yang Y, Mantia FL, Zhang YG, Cui Y. Carbon nanofiber supercapacitors with large areal capacitances. Appl Phys Lett 2009, 95:243109.
  • 104
    Pratyush D, Satish Kumar JL, Thein K. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 2007, 40:76897694.
  • 105
    Wang T, Kumar S. Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 2006, 102:10231029.
  • 106
    Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S. Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 2009, 50:45774583.
  • 107
    Presser V, Heon M, Gogotsi Y. Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 2011, 21:810833.
  • 108
    Yushin G, Nikitin A, Gogotsi Y. Carbide derived carbon. In: Gogotsi Y, ed. Nanomaterials Handbook. Boca Raton, FL: CRC Press; 2006, 239282.
  • 109
    Hutchins, O. (US; 1918).
  • 110
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P. Anomalous increase in carbon capacitance at pore size below 1 nm. Science 2006, 313:17601763.
  • 111
    Chmiola J, Yushin G, Dash R, Gogotsi Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources 2006, 158:765772.
  • 112
    Yushin G, Dash RK, Gogotsi Y, Jagiello J, Fischer JE. Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 2006, 16:22882293.
  • 113
    Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. JACS 2008, 130:2730.
  • 114
    Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 2005, 127:1600616007.
  • 115
    Latt M, Kaarik M, Permann L, Kuura H, Arulepp M, Leis J. A structural influence on the electrical double-layer characteristics of Al(4)C(3)-derived carbon. J Solid State Electrochem 2010, 14:543548.
  • 116
    Wang HL, Gao QM. Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide. Carbon 2009, 47:820828.
  • 117
    Kravchik AE, Kukushkina JA, Sokolov VV, Tereshchenko GF. Structure of nanoporous carbon produced from boron carbide. Carbon 2006, 44:32633268.
  • 118
    Dash RK, Nikitin A, Gogotsi Y. Microporous carbon derived from boron carbide. Microporous Mesoporous Mater 2004, 72:203208.
  • 119
    Chmiola J, Yushin G, Dash RK, Hoffman EN, Fischer JE, Barsoum MW, Gogotsi Y. Double-layer capacitance of selected carbide derived carbons in sulfuric acid. Electrochem Solid State Commun 2005, 8:A357A360.
  • 120
    Zheng LP, Wang Y, Wang XY, An HF, Yi LH. The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide. J Mater Sci 2010, 45:60306037.
  • 121
    Thomberg T, Kurig H, Janes A, Lust E. Mesoporous carbide-derived carbons prepared from different chromium carbides. Microporous Mesoporous Mater 2011, 141:8893.
  • 122
    Thomberg T, Janes A, Lust E. Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon. Electrochim Acta 2010, 55:31383143.
  • 123
    Leis J, Arulepp M, Kaarik M, Perkson A. The effect of Mo(2)C derived carbon pore size on the electrical double-layer characteristics in propylene carbonate-based electrolyte. Carbon 2010, 48:40014008.
  • 124
    Cambaz ZG, Yushin GN, Gogotsi Y, Vyshnyakova KL, Pereselentseva LN. Formation of carbide-derived carbon on beta-silicon carbide whiskers. J Am Ceram Soc 2006, 89:509514.
  • 125
    Rufino B, Mazerat S, Couvrat M, Lorrette C, Maskrot H, Pailler R. The effect of particle size on the formation and structure of carbide-derived carbon on beta-sic nanoparticles by reaction with chlorine. Carbon 2011, 49:30733083.
  • 126
    Oschatz M, Kockrick E, Rose M, Borchardt L, Klein N, Senkovska I, Freudenberg T, Korenblit Y, Yushin G, Kaskel S. A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon 2010, 48:39873992.
  • 127
    Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 2010, 4:13371344.
  • 128
    Huczko A, Osica M, Bystrzejewsk M, Lange H, Cudzilo S, Leis J, Arulepp M. Characterization of 1-D nanoSiC-derived nanoporous carbon. Phys Status Solidi B 2007, 244:39693972.
  • 129
    Arulepp M, Leis J, Latt M, Miller F, Rumma K, Lust E, Burke AF. The advanced carbide-derived carbon based supercapacitor. J Power Sources 2006, 162:14601466.
  • 130
    Dash RK, Chmiola J, Yushin G, Gogotsi Y, Laudisio G, Singer J, FIscher J, Kucheyev S. Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications. Carbon 2006, 44:24892497.
  • 131
    Permann L, Latt M, Leis J, Arulepp M. Electrical double layer characteristics of nanoporous carbon derived from titanium carbide. Electrochim Acta 2006, 51:12741281.
  • 132
    Fernandez JA, Arulepp M, Leis J, Stoeckli F, Centeno TA. EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes. Electrochim Acta 2008, 53:71117116.
  • 133
    Thomberg T, Janes A, Lust E. Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 2009, 630:5562.
  • 134
    Gonzalez-Garcia P, Urones-Garrote E, Avila-Brande D, Gomez-Herrero A, Otero-Diaz LC. Structural study of carbon nanomaterials prepared by chlorination of tungsten carbide and bis(cyclopentadienyl)tungsten dichloride. Carbon 2010, 48:36673675.
  • 135
    Dash RK, Yushin G, Gogotsi Y. Nanoporous Carbon Derived from Zirconium Carbide. Microporous Mesoporous Mater 2005, 86:5057.
  • 136
    Hoffman E, Yushin GN, Barsoum BM, Gogotsi G. Synthesis of nanoporous carbide-derived carbon by chlorination of titanium aluminum carbide. Chem Mater 2005, 17:23172322.
  • 137
    Yushin G, Hoffman EN, Nikitin A, Ye JJ, Barsoum MW, Gogotsi Y. Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon 2005, 44:20752082.
  • 138
    Yachamaneni S, Yushin G, Yeon SH, Gogotsi Y, Howell C, Sanderman S, Phillips G, Mikhalovsky S. Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials 2010, 31:47894794.
  • 139
    Ersoy DA, McNallan MJ, Gogotsi Y. Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Mat Res Innovat 2001, 5:5562.
  • 140
    Cambaz ZG, Yushin GN, Vyshnyakova KL, Pereselentseva LN, Gogotsi YG. Conservation of shape during formation of carbide-derived carbon on silicon carbide nano-whiskers. J Am Ceram Soc 2005, 89:509514.
  • 141
    Gogotsi Y, Weltz S, Ersoy DA, McNallan MJ. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature 2001, 411:283287.
  • 142
    Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y. Noncatalytic synthesis of carbon nanotubes and graphene on SiC. Carbon 2007, 46:841849.
  • 143
    Kusunoki M, Rokkaku M, Suzuki T. Epitaxial carbon nanotube film self-organized by decomposition of silicon carbide. Appl Phys Lett 1997, 71:26202622.
  • 144
    Eskusson J, Janes A, Kikas A, Matisen L, Lust E. Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 2011, 196:41094116.
  • 145
    Portet C, Yushin G, Gogotsi Y. Effect of carbon particle size on electrochemical performance of EDLC. J Electrochem Soc 2008, 155:A531A536.
  • 146
    Leis J, Arulepp M, Kuura A, Latt M, Lust E. Electrical double-layer characteristics of novel carbide-derived carbon materials. Carbon 2006, 44:21222129.
  • 147
    Presser V, Zhang LF, Niu JJ, McDonough J, Perez C, Fong H, Gogotsi Y. Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv Energy Mater 2011, 1:423430.
  • 148
    Portet C, Lillo-Rodenas MA, Linares-Solano A, Gogotsi Y. Capacitance of KOH activated carbide-derived carbons. Phys Chem Chem Phys 2009, 11:49434945.
  • 149
    Qu DY. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 2002, 109:403411.
  • 150
    Heon M, Lofland S, Applegate J, Notte R, Cortes E, Hettinger JD, Taberna P-L, Simon P, Huang PH, Brunet M, Gogotsi Y. Continuous carbide-derived carbon films with high volumetric capacitance. Energy Environ Sci 2011, 4:135138.
  • 151
    Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328:480483.
  • 152
    Sevilla M, Mokaya R. Activation of carbide-derived carbons: a route to materials with enhanced gas and energy storage properties. J Mater Chem 2011, 21:47274732.
  • 153
    Rose M, Kockrick E, Senkovska I, Kaskel S. High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors. Carbon 2010, 48:403407.
  • 154
    Paxman JR, Richardson JC, Dettmar PW, Corfe BM. Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite 2008, 51:713719.
  • 155
    Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem Mater 1997, 9:609615.
  • 156
    Ma ZX, Kyotani T, Tomita A. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. PCCP 2000, 2:23652366.
  • 157
    Ma ZX, Kyotani T, Liu Z, Terasaki O, Tomita A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chem Mater 2001, 13:4413.
  • 158
    Nishihara H, et al. A possible buckybowl-like structure of zeolite templated carbon. Carbon 2009, 47:12201230.
  • 159
    Wang HL, Gao QM, Hu J. Preparation of porous doped carbons and the high performance in electrochemical capacitors. Microporous Mesoporous Mater 2010, 131:8996.
  • 160
    Wang HL, Gao QM, Hu J, Chen Z. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon 2009, 47:22592268.
  • 161
    Portet C, Yang Z, Korenblit Y, Gogotsi Y, Mokaya R, Yushin G. Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J Electrochem Soc 2009, 156:A1A6.
  • 162
    Itai H, Nishihara H, Kogure T, Kyotani T. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor. J Am Chem Soc 2011, 133:11651167.
  • 163
    Nishihara H, Itoi H, Kogure T, Hou PX, Touhara H, Okino F, Kyotani T. Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. Chem 2009, 15:53555363.
  • 164
    Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Beguin F. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 2007, 17:18281836.
  • 165
    Barbieri O, Hahn M, Herzog A, Kotz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005, 43:13031310.
  • 166
    Frackowiak E, et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett 2002, 361:3541.
  • 167
    Jiang Q, Qu MZ, Zhou GM, Zhang BL, Yu ZL. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater Lett 2002, 57:988991.
  • 168
    Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammon PT, Shao-Horn Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nano 2010, 5:531537.
  • 169
    Portet C, Taberna PL, Simon P, Flahaut E. Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte. J Power Sources 2005, 139:371378.
  • 170
    Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gally R, Zuttel A. Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 2003, 124:321329.
  • 171
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 2006, 5:987994.
  • 172
    Gao LJ, Peng AP, Wang ZY, Zhang H, Shi ZJ, Gu ZN, Cao GP, Ding BZ. Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Commun 2008, 146:380383.
  • 173
    Barisci JN, Wallace GG, MacFarlane DR, Baughman RH. Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem Commun 2004, 6:2227.
  • 174
    Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 2002, 40:11931197.
  • 175
    Shiraishi S, Kurihara H, Okabe K, Hulicova D, Oya A. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco (TM) Buckytubes (TM)) in propylene carbonate electrolytes. Electrochem Commun 2002, 4:593598.
  • 176
    Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Processing and performance of electric double-layer capacitors with block-type carbon nanotube electrodes. Bull Chem Soc Jpn 1999, 72:25632566.
  • 177
    Ma RZ, Liang J, Wei BQ, Zhang B, Xu CL, Wu DH. Study of electrochemical capacitors utilizing carbon nanotube electrodes. J Power Sources 1999, 84:126129.
  • 178
    Lu W, Qu LT, Henry K, Dai LM. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 2009, 189:12701277.
  • 179
    Frackowiak E, Metenier K, Bertagna V, Beguin F. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 2000, 77:24212423.
  • 180
    Yoon BJ, Jeong S-H, Lee K-H, Kim HS, Park CG, Han JH. Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 2004, 388:170174.
  • 181
    Niu CM, Sichel EK, Hoch R, Moy D, Tennent H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 1997, 70:14801482.
  • 182
    Lee SW, Kim BS, Chen S, Shao-Horn Y, Hammond PT. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 2009, 131:671679.
  • 183
    An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH. Supercapacitors using single-walled carbon nanotube electrodes. Adv Mater 2001, 13:497.
  • 184
    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Cictor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM. Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 2006, 1:112116.
  • 185
    Du CS, Pan N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 2006, 17:53145318.
  • 186
    Du CS, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 2005, 16:350353.
  • 187
    Frackowiak E, Metenier K, Pellenq R, Bonnamy S, Beguin F. Capacitance properties of carbon nanotubes. In: Kuzmany H, Fink J, Mehring M, Roth S, eds. Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures, vol. 486. 1999, 429432.
  • 188
    Shah R, Zhang XF, Talapatra S. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Nanotechnology 2009, 20:395202.
  • 189
    Barisci JN, Wallace GG, Baughman RH. Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J Electroanal Chem 2000, 488:9298.
  • 190
    Zhang H, Cao GP, Yang YS, Gu ZN. Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60 degrees C. Carbon 2008, 46:3034.
  • 191
    Barisci JN, Wallace GG, Baughman RH. Electrochemical characterization of single-walled carbon nanotube electrodes. J Electrochem Soc 2000, 147:45804583.
  • 192
    Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G. Toward ultra-thick battery electrodes: aligned carbon nanotube—enabled architecture. Adv Mater 2011, 24:533537.
  • 193
    Hertzberg B, Alexeev A, Yushin G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. J Am Chem Soc 2010, 132:85488549.
  • 194
    Evanoff K, Benson J, Schauer M, Kovalenko I, Lahmore D, Ready J, Yushin G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 2012, 6:98379845.
  • 195
    Du CS, Pan N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. J Power Sources 2006, 160:14871494.
  • 196
    Gu W, Peters N, Yushin G. Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in li-ion electrochemical energy storage devices. Carbon 2013, 53:292301.
  • 197
    Ugarte D. Onion-like graphitic particles. In: Endo M, Iijima S, Dresselhaus MS, eds. Carbon Nanotubes. Oxford: Pergamon; 1996, 163167.
  • 198
    De Heer WA, Ugarte D. Formation mechanism of quasi-spherical carbon particles induced by electron bombardment. Chem Phys Lett 1993, 207:473479.
  • 199
    Sano N, Wang H, Alexandrou I, Chhowalla M, Teo KBK, Amaratunga GAJ, Iimura K. Properties of carbon onions produced by an arc discharge in water. J Appl Phys 2002, 92:27832788.
  • 200
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y. Control of sp(2)/sp(3) carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 2006, 128:1163511642.
  • 201
    Shenderova O, Jones C, Borjanovic V, Hens S, Cunning ham G, Moseenkov S, Kuznetsov V, Mcguire G. Detonation nanodiamond and onion-like carbon: applications in composites. Phys Status Solidi A 2008, 205:22452251.
  • 202
    Kuznetsov VL, Chuvilin AL, Butenko YV, Malkov IY, Titov VM. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett 1994, 222:343348.
  • 203
    Yushin GN, Osswald S, Padalko VI, Bogatyreva GP, Gogotsi Y. Effect of sintering on structure of nanodiamond. Diam Relat Mater 2005, 14:17211729.
  • 204
    Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 2011, 11:24722477.
  • 205
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based ultracapacitors. Nano Lett 2008, 8:34983502.
  • 206
    Hantel MM, Kaspar T, Nesper R, Wokaun A, Kotz R. Partially reduced graphite oxide for supercapacitor electrodes: effect of graphene layer spacing and huge specific capacitance. Electrochem Commun 2011, 13:9092.
  • 207
    Sato J, Takasu Y, Fukuda K, Sugimoto W. Graphene nanoplatelets via exfoliation of platelet carbon nanofibers and its electric double layer capacitance. Chem Lett 2011, 40:4445.
  • 208
    Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR. Graphene-based electrochemical supercapacitors. J Chem Sci 2008, 120:913.
  • 209
    Chen Y, Zhang XO, Zhang DC, Yu P, Ma YW. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011, 49:573580.
  • 210
    Lin ZY, Liu Y, Yao YG, Hildreth OJ, Li Z, Moon K, Wong CP. Superior capacitance of functionalized graphene. J Phys Chem C 2011, 115:71207125.
  • 211
    Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS. Supercapacitor devices based on graphene materials. J Phys Chem C 2009, 113:1310313107.
  • 212
    Chen Y, Zhang X, Yu P, Ma YW. Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. J Power Sources 2010, 195:30313035.
  • 213
    An XH, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 2010, 10:42954301.
  • 214
    Du QL, Zheng MB, Zhang LF, Wang YW, Chen JH, Xue LP, Dai WJ, Ji GB, Cao JM. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 2010, 55:38973903.
  • 215
    Li YM, van Zijll M, Chiang S, Pan N. KOH modified graphene nanosheets for supercapacitor electrodes. J Power Sources 2011, 196:60036006.
  • 216
    Shao YY, Wang J, Engelhard M, Wang CM, Lin YH. Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 2010, 20:743748.
  • 217
    Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010, 10:48634868.
  • 218
    Bushueva EG, Galkin PS, Okotrub AV, Bulusheva LG, Gavrilov NN, Kuznetsov VL, Moiseekov SI. Double layer supercapacitor properties of onion-like carbon materials. Phys Status Solidi B 2008, 245:22962299.
  • 219
    Portet C, Chmiola J, Gogotsi Y, Park S, Lian K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim Acta 2008, 53:76757680.
  • 220
    Park S, Lian K, Gogotsi Y. Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J Electrochem Soc 2009, 156:A921A926.
  • 221
    Kovalenko I, Bucknall D, Yushin G. Detonation nanodiamond and onion-like carbon—embedded polyaniline for supercapacitors. Adv Funct Mater 2010, 20:39793986.
  • 222
    Plonska-Brzezinska ME, Palkar A, Winkler K, Echegoyen L. Electrochemical properties of small carbon nano-onion films. Electrochem Solid State Lett 2010, 13:K35K38.
  • 223
    Breczko J, Winkler K, Plonska-Brzezinska ME, Villalta-Cerdas A, Echegoyen L. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. J Mater Chem 2010, 20:77617768.
  • 224
    Sun YQ, Wu Q, Xu YX, Bai H, Li C, Shi GG. Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J Mater Chem 2011, 21:71547160.
  • 225
    Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329:16371639.
  • 226
    Mayer ST, Pekala RW, Kaschmitter JL. The aerocapacitor—an electrochemical double-layer energy-storage device. J Electrochem Soc 1993, 140:446451.
  • 227
    Fang B, Wei YZ, Kumagai M. Modified carbon materials for high-rate EDLCs application. J Power Sources 2006, 155:487491.
  • 228
    Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B. Carbon aerogels for electrochemical applications. J Non-Cryst Solids 1998, 225:7480.
  • 229
    Probstle H, Wiener M, Fricke J. Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 2003, 10:213222.
  • 230
    Kim SJ, Hwang SW, Hyun SH. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 2005, 40:725731.
  • 231
    Lee YJ, Jung JC, Yi J, Baeck S-H, Yoon JR, Song IK. Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr Appl Phys 2010, 10:682686.
  • 232
    Moreno-Castilla C, Dawidziuk MB, Carrasco-Marin F, Zapata-Benabithe Z. Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts. Carbon 2011, 49:38083819.
  • 233
    Hwang SW, Hyun SH. Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 2004, 347:238245.
  • 234
    Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 2006, 158:784788.
  • 235
    Li J, Wang XY, Wang Y, Huang QH, Dai CL, Gamboa S, Sebastian PJ. Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J Non-Cryst Solids 2008, 354:1924.
  • 236
    Li WC, Reichenauer G, Fricke J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 2002, 40:29552959.
  • 237
    Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 1996, 26:10071018.
  • 238
    Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc 1996, 143:159169.
  • 239
    Kalpana D, Omkumar KS, Kumar SS, Renganathan NG. A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim Acta 2006, 52:13091315.
  • 240
    Gabelich CJ, Tran TD, Suffet IH. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ Sci Technol 2002, 36:30103019.
  • 241
    Welgemoed TJ, Schutte CF. Capacitive delonization technology (TM): an alternative desalination solution. Desalination 2005, 183:327340.
  • 242
    Saliger R, Fischer U, Herta C, Fricke J. High surface area carbon aerogels for supercapacitors. J Non-Cryst Solids 1998, 225:8185.
  • 243
    Wei YZ, Fang B, Iwasa S, Kumagai M. A novel electrode material for electric double-layer capacitors. J Power Sources 2005, 141:386391.
  • 244
    Baumann TF, Worsley MA, Han TY-J, Satcher JH Jr. High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids 2008, 354:35133515.
  • 245
    Zheng JP. The limitations of energy density of battery/double-layer capacitor asymmetric cells. J Electrochem Soc 2003, 150:A484.
  • 246
    Park JH, Park OO, Shin KH, Jin CS, Kim JH. An electrochemical capacitor based on a Ni(OH)[sub 2]/activated carbon composite electrode. Electrochem Solid-State Lett 2002, 5:H7.
  • 247
    Wang D-W, Li F, Cheng H-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 2008, 185:15631568.
  • 248
    Lang JW, Kong LB, Liu M, Luo YC, Kang L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 2010, 14:15331539.
  • 249
    Qu QT, et al. V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 2009, 11:13251328.
  • 250
    Chen L-M, Lai Q-Y, Hao Y-J, Zhao Y, Ji X-Y. Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloys Compd 2009, 467:465471.
  • 251
    Kong L-B, Liu M, Lang J-W, Luo Y-C, Kang L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J Electrochem Soc 2009, 156:A1000.
  • 252
    Liang Y-Y, Li H-L, Zhang X-G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Mater Sci Eng A 2008, 473:317322.
  • 253
    Khomenko V, Raymundo-Piñero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources 2006, 153:183190.
  • 254
    Brousse T, Taberna P-L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou YK, Favier F, Belanger D, Simon P. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 2007, 173:633641.
  • 255
    Xu C, Du H, Li B, Kang F, Zeng Y. Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J Electrochem Soc 2009, 156:A435.
  • 256
    Algharaibeh Z, Liu X, Pickup PG. An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J Power Sources 2009, 187:640643.
  • 257
    Perret P, Khani Z, Brousse T, Bélanger D, Guay D. Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochim Acta 2011, 56:81228128.
  • 258
    Yu N, Gao L, Zhao S, Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim Acta 2009, 54:38353841.
  • 259
    Machida K, Suematsu S, Ishimoto S, Tamamitsu K. High-voltage asymmetric electrochemical capacitor based on polyfluorene nanocomposite and activated carbon. J Electrochem Soc 2008, 155:A970.
  • 260
    Park JH, Park OK. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J Power Sources 2002, 111:185190.
  • 261
    Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F. Ionic liquids for hybrid supercapacitors. Electrochem Commun 2004, 6:566570.
  • 262
    Amatucci GG, Badway F, A DP, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 2001, 148:A930.
  • 263
    Du Pasquier A, Laforgue A, Simon P, Amatucci GG, Fauvarque J-F. A nonaqueous asymmetric hybrid Li[sub 4]Ti[sub 5]O[sub 12]/poly(fluorophenylthiophene) energy storage device. J Electrochem Soc 2002, 149:A302.
  • 264
    Brousse T, Marchand R, Taberna P-L, Simon P. TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage. J Power Sources 2006, 158:571577.
  • 265
    Chen C-H, Tsai D-S, Chung W-H, Lee K-Y, Chen Y-M, Huang Y-S. Electrochemical capacitors of miniature size with patterned carbon nanotubes and cobalt hydroxide. J Power Sources 2012, 205:510515.
  • 266
    Wang G-X, Zhang B-L, Yu Z-L, Qu M-Z. Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics 2005, 176:11691174.
  • 267
    Chen CH, Tsai DS, Chung WH, Chiou YD, Lee KY, Huang YS. Miniature asymmetric ultracapacitor of patterned carbon nanotubes and hydrous ruthenium dioxide. Nanotechnology 2012, 23:485402.
  • 268
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011, 49:29172925.
  • 269
    Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 2008, 177:643651.
  • 270
    Khomenko V, Raymundo-Piñero E, Béguin F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 2010, 195:42344241.
  • 271
    Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits. Electrochim Acta 2012, 72:117.
  • 272
    Kazaryan SA, Razumov SN, Litvinenko SV, Kharisov GG, Kogan VI. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J Electrochem Soc 2006, 153:A1655.
  • 273
    Benson J, Boukhalfa S, Magasinski A, Kvit A, Yushin G. Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 2012, 6:118125.
  • 274
    Snook GA, Wilson GJ, Pandolfo AG. Mathematical functions for optimisation of conducting polymer/activated carbon asymmetric supercapacitors. J Power Sources 2009, 186:216223.
  • 275
    Kovalenko I, Bucknall DG, Yushin G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv Funct Mater 2010, 20:39793986.
  • 276
    Choi HS, Kim T, Im JH, Park CR. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system. Nanotechnology 2011, 22:405402.
  • 277
    Sivakkumar SR, Milev AS, Pandolfo AG. Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochim Acta 2011, 56:97009706.
  • 278
    Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8:18051834.
  • 279
    Jurewicz K, Babe K, Źiókowski A, Wachowska H. Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 2003, 48:14911498.
  • 280
    Krzysztof Jurewicz KB, Ziolkowski A, Wachowska H, Kozlowski M. Ammoxidation of brown coals for supercapacitors. Fuel Process Technol 2002, 23:7778.
  • 281
    Frackowiak E. Carbon materials for supercapacitor application. Phys Chem Chem Phys 2007, 9:17741785.
  • 282
    Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett 2005, 404:5358.
  • 283
    Huang JS, Sumpter BG, Meunier V. Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 2008, 47:520524.
  • 284
    Shi H. Activated carbons and double layer capacitance. Electrochim Acta 1996, 41:1633.
  • 285
    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D. Carbon electrodes for double-layer capacitors—I. Relations between ion and pore dimensions. J Electrochem Soc 2000, 147:24862493.
  • 286
    Raymundo-Pinero E, Kierzek K, Machnikowski J, Beguin F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006, 44:24982507.
  • 287
    Feng G, Qiao R, Huang JS, Sumpter BG, Meunier V. Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano 2010, 4:23822390.
  • 288
    Huang JS, Sumpter BG, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem 2008, 14:66146626.
  • 289
    Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938, 60:309319.
  • 290
    Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. Unified approach to pore size characterization of microporous carbonaceous materials from N-2, Ar, and CO2 adsorption isotherms. Langmuir 2000, 16:23112320.
  • 291
    Centeno TA, Sereda O, Stoeckli F. Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. Phys Chem Chem Phys 2011, 13:1240312406.
  • 292
    Sanchez-Gonzalez J, Stoeckli F, Centeno TA. The role of the electric conductivity of carbons in the electrochemical capacitor performance. J Electroanal Chem 2011, 657:176180.
  • 293
    Centeno TA, Stoeckli F. The volumetric capacitance of microporous carbons in organic electrolyte. Electrochem Commun 2012, 16:3436.
  • 294
    Centeno TA, Stoeckli F. Surface-related capacitance of microporous carbons in aqueous and organic electrolytes. Electrochim Acta 2011, 56:73347339.
  • 295
    Choi NS, Chen ZH, Freunberger SA, Ji XL, Sun Y-K, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 2012, 51:999410024.
  • 296
    Korenblit Y, Kajdos A, West WC, Smart MC, Brandon EJ, Alexander K, Jagiello J, Yushin G. In situ studies of ion transport in microporous supercapacitor electrodes at ultralow temperatures. Adv Funct Mater 2012, 22:16551662.
  • 297
    Miller JR, Simon P. Materials science—electrochemical capacitors for energy management. Science 2008, 321:651652.
  • 298
    Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun 2006, 8:610614.
  • 299
    Urbonaite S, Juarez-Galan JM, Leis J, Rodriguez-Reinoso F, Svensson G. Porosity development along the synthesis of carbons from metal carbides. Microporous Mesoporous Mater 2008, 113:1421.
  • 300
    Portet C, Taberna PL, Simon P, Flahaut E. Modification of Al current collector/active material interface for power improvement of electrochemical capacitor electrodes. J Electrochem Soc 2006, 153:A649A653.
  • 301
    Portet C, Taberna PL, Simon P, Laberty-Robert C. Modification of Al current collector surface by sol–gel deposit for carbon-carbon supercapacitor applications. Electrochim Acta 2004, 49:905912.
  • 302
    Fang B, Binder L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 2006, 163:616622.
  • 303
    Huang JS, Sumpter BG, Meunier V. Curvature effects in carbon nanomaterials: exohedral versus endohedral supercapacitors. J Mater Res 2010, 25:15251531.
  • 304
    Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Janes A, Lust E. Influence of the solvent properties on the characteristics of a double layer capacitor. J Power Sources 2004, 133:320328.
  • 305
    Tamai H, Kunihiro M, Morita M, Yasuda H. Mesoporous activated carbon as electrode for electric double layer capacitor. J Mater Sci 2005, 40:37033707.
  • 306
    Kotz R, Hahn M, Gallay R. Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 2006, 154:550555.
  • 307
    Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources 2006, 157:1127.
  • 308
    Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque JF. Possible improvements in making carbon electrodes for organic supercapacitors. J Power Sources 1999, 79:238241.
  • 309
    Gallagher KG, Yushin G, Fuller TF. The role of nanostructure in the electrochemical oxidation of model-carbon materials in acidic environments. J Electrochem Soc 2010, 157:B820B830.
  • 310
    Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu JS. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 2011, 21:73027307.
  • 311
    Fic K, Lota G, Frackowiak E. Effect of surfactants on capacitance properties of carbon electrodes. Electrochim Acta 2012, 60:206212.
  • 312
    Fic K, Lota G, Meller M, Frackowiak E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 2012, 5:58425850.
  • 313
    Demarconnay L, Raymundo-Pinero E, Beguin F. A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 2010, 12:12751278.
  • 314
    Bichat MP, Raymundo-Pinero E, Beguin F. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 2010, 48:43514361.
  • 315
    Conway BE, Pell WG, Liu T-C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 1997, 65:5359.
  • 316
    Liu T, Pell WG, Conway BE. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 1997, 42:35413552.
  • 317
    Niu J, Conway BE, Pell WG. Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. J Power Sources 2004, 135:332343.
  • 318
    Diab Y, Venet P, Gualous H, Rojat G. Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans Power Electron 2009, 24:510517.
  • 319
    Jerabek EC, Mansfield SF. Google Patents, 2000.
  • 320
    Morimoto T, Hiratsuka K, Sanada Y, Kurihara K. Electric double-layer capacitor using organic electrolyte. J Power Sources 1996, 60:239247.
  • 321
    Qiao W, Korai Y, Mochida I, Hori Y, Maeda T. Preparation of an activated carbon artifact oxidative modification of coconut shell-based carbon to improved the strength. Carbon 2002, 40:351358.
  • 322
    Gu W, Sevilla M, Magasinski A, Fuertes AF, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ Sci 2013, 6:24652476.
  • 323
    Gu W, Sevilla M, Yushin G. Sulfur-containing activated carbons without bottle-neck pores for double-layer capacitors: a case study for pseudocapacitance detection. J Power Sources 2013, 53:292301.
  • 324
    Kaus M, Kowal J, Sauer DU. Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim Acta 2010, 55:75167523.
  • 325
    Zhang X, et al. The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. J Power Sources 2012, 199:402408.