Get access

Hydrolysis and fermentation for cellulosic ethanol production

Authors

  • Charilaos Xiros,

    1. Industrial Biotechnology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    Search for more papers by this author
    • These authors contributed equally to this work

  • Evangelos Topakas,

    1. BIOtechMASS Unit, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
    Search for more papers by this author
    • These authors contributed equally to this work

  • Paul Christakopoulos

    Corresponding author
    1. Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
    Search for more papers by this author

Abstract

Second-generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural, or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. At least three major factors—rapidly increasing atmospheric CO2 levels, dwindling fossil fuel reserves, and their rising costs—suggest that we now need to accelerate research plans to make greater use of plant-based biomass for energy production and as a chemical feedstock as part of a sustainable energy economy. Optimizing the production of bioethanol to be competitive with petrochemical fuels is the main challenge for the underlying process development. The exhaustive research on enzyme technology during the latest years, resulting in significant advances in the field, show the importance of the enzymatic hydrolysis for a profitable ethanol production process. On the other hand, the persisting challenges in biomass pretreatment, which are the initial steps in most process designs, show the remarkable recalcitrance of the lignocellulosic materials to biological degradation. The recent scientific trends show toward an integrated overall bioconversion process in which fermentation technology and genetic engineering of ethanologenic microorganisms aim not only at maximizing yields and productivities but also at widening the range of fermentation products and applications.

Ancillary