SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Lovegrove K, Stein W. Concentrating Solar Power Technology. Principles, Developments and Applications. No. 21. Woodhead Publishing Series in Energy. Cambridge, UK: Woodhead Publishing Limited; 2012, ISBN: 9781845697693.
  • 2
    Herring G. Concentrating Solar Thermal Power Gains Steam in Spain, as Momentum Builds for Major Projects in the US, North Africa, the Middle East, Asia and Australia. Photon International; 2009, 4652.
  • 3
    Nitsch J, Krewitt W, Langniss O. Renewable energies in Europe. Encyclopedia of Energy. San Diego: Elsevier; 2004, 5, 313331.
  • 4
    Philibert C. International Energy Technology Collaboration and Climate Change Mitigation, Case Study 1: Concentrating Solar Power Technologies. Paris, France: OECD/IEA Information Paper. COM/ENV/EPOC/IEA/ SLT; 2004, 8.
  • 5
    Burkhardt JJ, Heath GA, Turchi CS. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 2011, 45:24572464.
  • 6
    IEA. Energy Technology Perspectives 2010—Scenarios and Strategies to 2050. Paris, France: International Energy Agency; 2010. ISBN 978-92-64-08597-8.
  • 7
    Winter CJ, Sizmann RL, Vant-Hull LL, eds. Solar Power Plants. Berlin, Germany: Springer-Verlag; 1991, ISBN 3-540-18897-5.
  • 8
    Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy Combust Sci 2003, 29:567597.
  • 9
    Romero M, Zarza E. Concentrating solar thermal power. In: Kreith F, Goswami Y, eds. Handboook of Energy Efficiency and Renewable Energy. Chapter 21. Boca Raton, Florida: CRC Press, Taylor & Francis Group; 2007, 198.
  • 10
    Kearney AT. Solar Thermal Electricity 2025. STE Industry Roadmap for the European Solar Thermal Electricity Association (ESTELA). Brussels, Belgium: European Solar Thermal Electricity Association; 2010. Available at: www.estelasolar.eu. (Accessed July 15, 2013).
  • 11
    Rabl A. Active Solar Collectors and Their Applications. New York: Oxford University Press; 1985, 5966. ISBN: 0-19-503546-1.
  • 12
    Welford WT, Winston R. High Collection Non-Imaging Optics. New York: Academic Press; 1989.
  • 13
    Romero M, González Aguilar J. Solar thermal power plants: from endangered species to bulk power production in sun-belt regions. Chapter 3. In: Rao KR, ed. Energy & Power Generation Handbook. New York: ASME Three Park Avenue; 2011, 100165990.
  • 14
    Mills D. Advances in solar thermal electricity technology. Solar Energy 2004, 76:1931.
  • 15
    Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, Buck R, Diver R, Andraka C, Moreno J. Dish-stirling systems: an overview of development and status. Int J Solar Energy Eng 2003, 125:135151.
  • 16
    Lopez C, Stone K. Design and performance of the Southern California Edison Stirling Dish. Solar Engineering, Proceedings of ASME International Solar Energy Conference. Maui, Hawaii; 1992, 945952. New York: ASME. ISBN 0-7918-762-2.
  • 17
    Keck T, Heller P, Weinrebe G. Envirodish and Eurodish—system and status. Proceedings of the ISES Solar World Congress. Göteborg, Sweden; 2003. Freiburg, Germany: International Solar Energy Society. ISBN: 91-631-4740-8.
  • 18
    Stine W, Diver RB. A Compendium of Solar Dish/Stirling Technology. Report SAND93–7026. Albuquerque, New Mexico: Sandia National Laboratories; 1994.
  • 19
    Geyer M. Panel 1 briefing material on status of major project opportunities. The current situation, issues, barriers and planned solutions. International Executive Conference on Expanding the Market for Concentrating Solar Power (CSP) – Moving Opportunities into Projects; Berlin, Germany. June 19–20; 2002.
  • 20
    Price H, Luepfert E, Kearney D, Zarza E, Cohen G, Gee R, Mahoney R. Advances in parabolic trough solar power technology. Int J Solar Energy Eng 2002, 124:109125.
  • 21
    Fernandez-Garcia A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev 2010, 14:16951721.
  • 22
    Rabl A. Active Solar Collectors and Their Applications. New York: Oxford University Press; 1985, 5966. ISBN: 0-19-503546-1.
  • 23
    Eck M, Zarza E, Eickhoff M, Rheinländer J, Valenzuela L. Applied research concerning the direct steam generation in parabolic troughs. Solar Energy 2003, 74:341351.
  • 24
    Kearney DW, Cohen GE. Current experiences with the SEGS parabolic trough plants. In: Becker M, Böhmer M, eds. Proceedings of the Eighth International Symposium on Solar Thermal Concentrating Technologies. Vol. 1. Cologne, Germany, 1996. Heidelberg, Germany: C.F. Müller; 1997, 217–224.
  • 25
    Goebel O. Shams one 100 MW CSP plant in Abu Dhabi. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 15523. Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 26
    Romero M. Solar thermal power plants. In: IUPAP Working Group on Energy, ed. Report on Research and Development of Energy Technologies, October 6; 2004, 96108.
  • 27
    Horn M, Führing H, Rheinländer J. Economic analysis of integrated solar combined cycle power plants. A sample case: the economic feasibility of an ISCCS power plant in Egypt. Energy 2004, 29:9351011.
  • 28
    Relloso S, Delgado E. Experience with molten salt thermal storage in a commercial parabolic trough plant. Andasol-1 commisioning and operation. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 11396. Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 29
    Falchetta M, Mazzei D, Crescenzi T, Merlo L. Design of the Archimede 5 MW molten salt parabolic trough solar plant. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 11608. Berlín, Germany; September 15–18, 2009. ISBN 978-3-00-028755-8.
  • 30
    Laing D, Steinmann W-D, Tamme R., Richter C. Solid media thermal storage for parabolic trough power plants. Solar Energy 2006, 80:12831289.
  • 31
    Laing D, Bahl C, Bauer T, Lehmann D, Steinmann WD. Thermal energy storage for direct steam generation. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 12055. Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 32
    Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 2012, 16: 21182132.
  • 33
    Zarza E, Valenzuela L, Leon J, Hennecke K, Eck M, Weyers HD, Eickhoff M. Direct steam generation in parabolic troughs: final results and conclusions of the DISS project. Energy 2004, 29:635644.
  • 34
    Platzer WJ, Linear Frensel collector as an emerging option for concentrating solar thermal power. Proceedings of the ISES Solar World Congress; 2009. Freiburg, Germany: International Solar Energy Society.
  • 35
    Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci 2004, 30:231295.
  • 36
    Francia G, Pilot plants for solar steam generation stations. Solar Energy 1968, 12:5164.
  • 37
    Di Canio DG, Treytl WJ, Jur FA, Watson CD. Line Focus Solar Thermal Central Receiver Research Study—Final Report, DOE/ET/20426–1. US Department of Energy; 1979. Santa Clara, California: FMC Corporation.
  • 38
    Mills DR, Morrison GL. Compact linear Fresnel reflector solar thermal powerplants. Solar Energy 1999, 68:263283.
  • 39
    Bernhard R, Hein S, de Lalaing J, Eck M, Eickhoff M, Pfänder M, Morin G, Häberle A. Linear Fresnel collector demonstration on the PSA, Part II—commissioning and first performance tests. Proceedings of the 14th Solar Paces Symposium. Las Vegas; 2008. Golden, Colorado: NREL. Available at: http://www.nrel.gov/docs/gen/fy08/42709CD.zip. (Accessed July 15, 2013).
  • 40
    Hautmann G, Selig M, Mertins M. First European linear Fresnel power plant in operation—operational experience and outlook. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 16541. Berlin, Germany; September 15–18, 2009. ISBN 978-3-00-028755-8.
  • 41
    Selig M. Commercial CSP plants based on Fresnel collector technology. Proceedings of SolarPACES 2011. Ref. manuscript: 24660. Granada Spain; 2011. Madrid, Spain: CIEMAT.
  • 42
    Lehaut C. Construction, start-up and performance tests of a direct steam generation CSP Fresnel module. Proceeding of SolarPACES 2010. Ref. manuscript. 0008. Perpignan, France; 2010. Odeillo, France: PROMES-CNRS.
  • 43
    Dersch J, Morin G, Eck M, Häberle A. Comparison of linear Fresnel and parabolic trough collector systems—system analysis to determine break even costs of linear Fresnel collectors. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 15162. Berlin, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 44
    Romero M, Marcos MJ, Téllez FM, Blanco M, Fernández V, Baonza F, Berger S. Distributed power from solar tower systems: a MIUS approach. Solar Energy 2000, 67:249264.
  • 45
    Kolb GJ. Economic evaluation of solar-only and hybrid power towers using molten-salt technology. Solar Energy 1998, 62:5161.
  • 46
    Falcone PK. A Handbook for Solar Central Receiver Design. SAND86–8009. Livermore, California: Sandia National Laboratories; 1986. Available at: http://prod.sandia.gov/techlib/access-control.cgi/1986/868009.pdf. (Accessed July 15, 2013).
  • 47
    Sánchez M, Romero M. Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces. Solar Energy 2006, 80:861874.
  • 48
    Lipps FW, Vant-Hull LL. A cellwise method for the optimization of large central receiver systems. Solar Energy 1978, 20:505516.
  • 49
    Kistler BL. A User's Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants. Sandia Report, SAND-86–8018. Livermore, California: Sandia National Laboratories; 1986. Available at: http://prod.sandia.gov/techlib/access-control.cgi/1986/868018.pdf. (Accessed July 15, 2013).
  • 50
    Mavis CL. A Description and Assessment of Heliostat Technology. SAND87–8025, Livermore, California: Sandia National Laboratories; 1989.
  • 51
    Romero M, Conejero E, Sánchez M. Recent experiences on reflectant module components for innovative heliostats. Solar Energy Mater 1991, 24:320332.
  • 52
    Monterreal R, Romero M, García G, Barrera G. Development and testing of a 100 m2 glass-metal heliostat with a new local control system. In: Claridge DE, Pacheco JE, eds. Solar Engineering. New York: ASME; 1997, 251259. ISBN: 0-7918-1556-0.
  • 53
    Osuna R, Fernández V, Romero M, Sanchez M. PS10: A 11-MW solar tower power plant with saturated steam receiver. Proceedings 12th SolarPACES International Symposium. CD-Rom. 6–8 October. Oaxaca, Mexico; 2004, S3–102. Cuernavaca, Mexico: Instituto Investigaciones Electricas. ISBN: 968-6114-18-1.
  • 54
    Silberstein E, Magen Y, Kroyzer G, Hayut R, Huss H. Brightsource solar tower pilot in Israel's Negev operation at 130 bar @ 530°C superheated steam. Proceedings SolarPACES 2009 (CD). Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 55
    Schell S. Design and evaluation of eSolar's heliostat fields. Proceedings SolarPACES 2009 (CD). Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 56
    Romero M, Buck R, Pacheco JE. an update on solar central receiver systems, projects, and technologies. Int J Solar Energy Eng 2002, 124:98108.
  • 57
    Becker M, Vant-Hull LL. Thermal receivers. In: Winter CJ, Sizmann RL, Vant-Hull LL, eds. Solar Power Plants. Berlin, Germany: Springer-Verlag; 1991, 163197. ISBN 3-540-18897-5.
  • 58
    Avila-Marin AL. Volumetric receivers in solar thermal power plants with central receiver system technology: a review. Solar Energy 2011, 85:891910.
  • 59
    Agrafiotis CC, Mavroidis I, Konstandopoulos AG, Hoffschmidt B, Stobbe P, Romero M, Fernández-Quero V. Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Solar Energy Mater Solar Cells 2007, 91:474488.
  • 60
    Palero S, Romero M, Castillo JL. Comparison of experimental and numerical air temperature distributions behind a cylindrical volumetric solar absorber module. J Solar Energy Eng 2008, 130:011011-1-8.
  • 61
    Marcos MJ, Romero M, Palero S. Analysis of air return alternatives for CRS-type open volumetric receiver. Energy 2004, 29:677686.
  • 62
    Hoffschmidt B, Fernandez V, Pitz-Paal R, Romero M, Stobbe P, Téllez F. The development strategy of the hitrec volumetric receiver technology—up-scaling from 200 kWth via 3 MWth up to 10MWel. 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies. Zurich, Switzerland; September 4–6, 2002, 117126. Zurich, Switzerland: ETH. ISBN: 3-9521409-3-7.
  • 63
    Romero M, Marcos MJ, Osuna R, Fernández V. Design and implementation plan of a 10 MW solar tower power plant based on volumetric-air technology in Seville (Spain). SOLAR ENGINEERING 2000-Proceedings of the ASME International Solar Energy Conference. Madison, Wisconsin; June 16–21. New York: ASME; 2000. ISBN: 0791818799.
  • 64
    Tellez F, Romero M, Heller P, Valverde A, Reche JF, Ulmer S, Dibowski G. Thermal performance of SolAir 3000 kWth ceramic volumetric solar receiver. Proceedings 12th SolarPACES International Symposium. CD-Rom. Oaxaca, Mexico; October 6–8, 2004, S9–206. ISBN: 968-6114-18-1.
  • 65
    Kribus A. Future directions in solar thermal electricity generation. Solar Thermal Electricity Generation. Madrid, Spain: Colección documentos CIEMAT. CIEMAT; 1999, 251285. ISBN: 84-7834-353-9.
  • 66
    Schmitz M, Schwarzbözl P, Buck R, Pitz-Paal Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators. Solar Energy 2006, 80:111120.
  • 67
    Grasse W, Hertlein HP, Winter CJ. Thermal solar power plants experience. In: Winter CJ, Sizmann RL, Vant-Hull LL, eds. Solar Power Plants. Berlin, Germany: Springer-Verlag; 1991, 215282. ISBN 3-540-18897-5.
  • 68
    Radosevich LG, Skinrood AC.The power production operation of Solar One, the 10 MWe solar thermal central receiver pilot plant. J Solar Energy Eng 1989, 111:144151.
  • 69
    Pacheco JE, Gilbert R. Overview of recent results of the Solar Two test and evaluations program. Renewable and Advanced Energy Systems for the 21st Century RAES’99. Maui, Hawaii; April 11–15. RAES99–7731. New York: ASME; 1999. ISBN: 0-7918-1963-9.
  • 70
    Epstein M, Liebermann D, Rosh M, Shor AJ. Solar testing of 2 MW (th) water/steam receiver at the Weizmann Institute solar tower. Solar Energy Mater 1991, 24:265278.
  • 71
    Fernandez-Quero V, Osuna R, Romero M, Sanchez M, Ruiz V, Silva M. EURECA: advanced receiver for direct superheated steam generation in solar towers, as an option for increasing efficiency in large low cost direct steam generation plants. Proceedings of the 2005 Solar World Congress ISES-2005; August 6–12, Orlando, Florida. Boulder, Colorado: Pub. American Solar Energy Society; 2005. ISBN 0-89553-177-1.
  • 72
    Tyner CE, Pacheco JE. eSolar's power plant architecture. Proceedings SolarPACES 2009 (CD). Berlín, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 73
    Kelly B, Singh M. Summary of the final design for the 10 MWe solar two central receiver project. Solar Engineering. Vol. 1. New York: ASME; 1995, 575.
  • 74
    Pacheco JE, Reilly HE, Kolb GJ, Tyner CE. (2000), Summary of the solar two test and evaluation program. Proceeding of the Renewable Energy for the New Millennium. Sydney, Australia; March 8–10, 2000, 111.
  • 75
    Ortega JI, Burgaleta JI, Tellez F. Central receiver system (CRS) solar power plant using molten salt as heat transfer fluid. In: Romero M, Martínez D, Ruiz V, Silva M, Brown M, eds. Proceedings of the 13th International Symposium on Concentrated Solar Power and Chemical Energy Technologies. Seville, Spain; June 20. Pub. Madrid, Spain: CIEMAT; 2006. ISBN: 84-7834-519-1.
  • 76
    Burgaleta JI, Arias S, Salbidegoitia IB. Operative advantages of a central tower solar plant with thermal storage system. Proceedings SolarPACES 2009 (CD). Ref. manuscript: 11720. Berlin, Germany; September 15–18, 2009. Stuttgart, Germany: DLR. ISBN 978-3-00-028755-8.
  • 77
    REN21. Renewables 2013 Global Status Report. Paris: REN21 Secretariat; 2013. ISBN 978-3-9815934-0-2.