SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Renewable energy policy network for the 21st century. Renewables 2012 Global Status Report. Paris: REN21 Secretariat; 2012, 172 p. Available at: .http://www.map.ren21.net/GSR/GSR2012.pdf?bcsi_scan_9688b637a46568db=0&bcsi_scan_filename=GSR2012.pdf. (Accessed August 22, 2012).
  • 2
    Statistical review of world energy. Available at: bp.com/statisticalreview. (Accessed April 17, 2010).
  • 3
    Licht FO. Feedstock use for biofuels – the outlook for 2011. World Ethanol & Biofuels Report 2011, 9:1.
  • 4
    Empresa de Pesquisa Energética, Ministério de Minas e Energia. Plano Decenal de Expansão de Energia 2019. Brasília: Ministério de Minas e Energia, Empresa de Pesquisa Energética; 2010, 77.
  • 5
    International Energy Agency. Technology Roadmap—Biofuels for Transport. Paris: IEA; 2011, 52.
  • 6
    Gatti Junior W. 35 years of Proalcool creation: from ethanol-fuel to flex fuel vehicle. In: Proceedings XIII SemeAd, São Paulo, Brazil, September 8, 2010.
  • 7
    Moreira JR, Goldemberg J. The alcohol program. Energy Policy 1999, 24:229245.
  • 8
    Kovalik W. Ethanol's first century: fuel blending and substitution programs in Europe, Asia, Africa and Latin America. In: Proceedings XVI International Symposium on Alcohol Fuels, Rio de Janeiro, Brazil, November 2006.
  • 9
    Rosillo-Calle F, Cortez LAB. Towards ProAlcool II—a review of the Brazilian bioethanol programme. Biomass Bioenergy 1998, 14:115124.
  • 10
    Licht FO, World ethanol and biodiesel markets—a global industry outlook. London: Informa Agra & Commercial; 2011, 100.
  • 11
    Companhia Nacional de Abastecimento (CONAB). Acompanhamento de safra brasileira: cana-de-açúcar, segundo levantamento—agosto/2012. Brasília: Companhia Nacional de Abastecimento; 2012.
  • 12
    Brazilian Automotive Industry Association. Brazilian Automotive Industry Yearbook; 2012. Available at: www.anfavea.com.br/anuario.html. (Accessed March 2, 2012).
  • 13
    Empresa de Pesquisa Energética, Ministério de Minas e Energia. Relatório Final do Balanço Energético Nacional. Available at: https://ben.epe.gov.br/. (Accessed November 14, 2011) [in Portuguese].
  • 14
    Lamers P, Junginger M, Hamelinck C, Faaij A. Developments in international solid biofuel trade– an analysis of volumes, policies, and market factors. Renew Sustain Energy Rev 2012, 16:31763199.
  • 15
    Brazilian sugar and ethanol guide 2011. PROCANA, Ribeirão Preto; 2011, 432.
  • 16
    Companhia Nacional de Abastecimento. Mapas temáticos. Available at: http://www.conab.gov.br/conteudos.php?a=1102&t=2. (Accessed February 3, 2010) [in Portuguese].
  • 17
    CANASAT. Monitoramento da Cana-de-açúcar via imagens de satélite. Available at: http://www.dsr.inpe.br/laf/canasat/. (Accessed February 1, 2010) [in Portuguese].
  • 18
    Leite RCC. Bioetanol combustível: uma oportunidade para o Brazil. Brasília: CGEE; 2009, 536 [in Portuguese].
  • 19
    Companhia Nacional de Abastecimento. Perfil do Setor do Açúcar e do Álcool no Brasil. Brasília: Companhia Nacional de Abastecimento; 2010.
  • 20
    BNDES and CGEE. Sugarcane-based bioethanol : energy for sustainable development. Rio de Janeiro: BNDES; 2008, 304. Available at: http://www.sugarcanebioethanol.org/en/download/bioetanol.pdf. (Accessed November 9, 2010).
  • 21
    União da Indústria de Cana-de-açúcar (UNICA). Outlook for Brazilian biofuels. In: Canadian Renewable Fuels Summit (presentation), Canada, December 1–3, 2008.
  • 22
    Figliolino A. Visão e tendências do setor de açúcar e álcool no Brasil. In: Canaplan Annual Meeting, Ribeirão Preto, Brazil, April 15, 2010.
  • 23
    União da Indústria de Cana-de-açúcar (UNICA). An overview of the Brazilian sugarcane industry. In: Better Sugarcane Initiative General Assembly, São Paulo, Brazil, November 13, 2008.
  • 24
    Instituto Brasileiro de Geografia e Estatística. Municipal agricultural production. Available at: http://www.sidra.ibge.gov.br/. (Accessed May 14, 2012).
  • 25
    Gouvêa JRF, Sentelhas PC, Gazzola ST, Santos MC. Climate changes and technological advances: impacts on sugarcane productivity in tropical southern Brazil. Sci Agric 2009, 66:593605.
  • 26
    Nass LL, Pereira PAA, Ellis D. Biofuels in Brazil: an overview. Crop Sci 2007, 47:22282237.
  • 27
    Rosseto R, Santiago AD. Programas: melhoramento genético. Agencia de informação EMBRAPA. Available at: http://www.agencia.cnptia.embrapa.br/gestor/cana-de-acucar/arvore/CONTAG01_141_22122006154842.html. (Accessed April 20, 2012).
  • 28
    Pires RCM, Arruda FB, Sakai E. Irrigação e drenagem. In: Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA, eds. Cana-de-açúcar. Campinas, Brazil: Instituto Agronômico de Campinas; 2008, 631670.
  • 29
    Macedo IC. A energia da cana-de-açúcar—doze estudos sobre a agroindústria da cana-de-açúcar no Brasil e sua sustentabilidade. São Paulo: Editora Berlendis & Vertecchia; 2005, 245.
  • 30
    Azevedo JL, Araujo WL. Genetically modified crops: environmental and human health. Mutation Res 2003, 544:223233.
  • 31
    Espironelo A, Raij BV, Penatti CP, Cantarella H, Morelli JL, Orlando Filho J, Landell MGA, Rossetto R. Cana-De-Açúcar. In: Van Raij B, Cantarella H, Quaggio JA, Furlani AMC, eds. Recomendações de adubação e calagem para o Estado de São Paulo. Campinas, Brazil: Instituto Agronômico de Campinas; 1996, 237239.
  • 32
    Trivelin PCO, Rodrigues JCS, Victoria RL. Utilização por soqueira de cana-deaçúcar de início de safra do nitrogênio da aquamônia-15N e uréia-15N aplicado ao solo em complemento à vinhaça. Pesqui Agropecu Bras 1996, 31:8999.
  • 33
    Moreira JR. Water use and impacts due ethanol production in Brazil. In: Proceedings Linkages between Energy and Water Management for Agriculture in Developing Countries. Hyderabad, India, January 2930, 2007. Available at: http://www.iwmi.cgiar.org/EWMA/files/papers/Jose_Moreira.pdf. (Accessed June 23, 2011).
  • 34
    Trivelin PCO, Vitti AC, Oliveira MW, Gava GJC, Sarriés GA. Utilização de nitrogênio e produtividade da cana-de-açúcar (cana-planta) em solo arenoso com incorporação de resíduos da cultura. Rev Bras Ciênc Solo 2002, 26:637646.
  • 35
    Wiedenfeld RP. Effects of irrigation and N fertilizer application on sugarcane yield and quality. Field Crops Res 1995, 43:101115.
  • 36
    Muchow RC, Robertson MJ, Wood AW, Keating BA. Effect of nitrogen on the time-course of sucrose accumulation in sugarcane. Field Crops Res 1996, 47:143153.
  • 37
    Verburg K, Keating BA, Probert ME, Bristow KL, Huth NI. Nitrate leaching under sugarcane: interactions between crop yield, soil type and management strategies. In Michalk DL, Pratley JE. eds. In: Agronomy: Growing Greener Future. Proceedings of the 9th Australian Society of Agronomy Conference, July 20–23, 1998. Wagga Wagga, Australia: Charles Sturt University; 1998, 717.
  • 38
    Ribeiro BT, Lima JM, Guilherme LRG, Julião LGF. Lead absortion and leaching from an inceptisol sample amended with sugarcane vinasse. Sci Agric 2010, 67:441447.
  • 39
    Boddey RM, Urquiaga S, Alves BJR, Reis V. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 2003, 252:139149.
  • 40
    Purchase BS. Nitrogen fixation associated with sugarcane. Proc South African Sugar Technol Asso 1980, 54:173176.
  • 41
    Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S. Use of the 15 N natural abundance technique for the quantification of the contribution of N2 fixation to grasses and cereals. Aust J Plant Physiol 2001, 28:889895.
  • 42
    Arbex MA, Martins LC, Oliveira RC, Pereira LAA, Arbex FF, Cançado JED, Saldiva PHN, Braga ALF. Outdoor biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J Epidemiol Community Health 2007, 61:395400.
  • 43
    Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Arbex MA, Zanobetti A, Braga ALF. The impact of sugar cane—burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 2006, 114:725729.
  • 44
    Arbex AA, Saldiva PHN, Pereira LAA, Braga ALF. Impact of outdoor biomass air pollution on hypertension hospital admissions. J Epidemiol Community Health 2010, 64:573579.
  • 45
    Alvarez IA, Castro PRC. Crescimento da parte aérea de cana crua e queimada. Sci Agric 1999, 56:10691079.
  • 46
    Gava GJC, Trivelin PCO, Vitti AC, Oliveira MW. Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesqu Agropecu Bras 2005, 40:689695.
  • 47
    Sparovek G, Schnug E. Temporal erosion-induced soil degradation and yield loss. Soil Sci Soc Am J 2001, 65:14791486.
  • 48
    Tominaga TT, Cássaro FAM, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC. Variability of soil water content and bulk density in a sugarcane field. Aust J Soil Res 2002, 40:605614.
  • 49
    Graham MH, Haynes RJ, Meyer JH. Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Eur J Soil Sci 2002, 53:589598.
  • 50
    Galdos MV, Cerri CC, Cerri CEP. Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 2009, 153:347352.
  • 51
    Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 2011, 62:2328. doi:10.1111/j.1365-2389.2010.01315.x
  • 52
    Braunack M, Arvidsson J, Hakansson I. Effect of harvest traffic position on soil conditions and sugarcane (Saccharum officinarum) response to environmental conditions in Queensland, Australia. Soil Tillage Res 2006, 89:103121. doi: 10.1016/j.still.2005.07.004.
  • 53
    Braunbeck O, Macedo IC, Cortez LAB. Modernizing cane production to enhance the biomass base in Brazil. In Silveira, S, ed. Bioenergy—Realizing the Potential. Oxford: Elsevier; 2005, 7594.
  • 54
    Annicchino W. A resposta do empresário aos desafios do Proálcool: o ponto de vista dos produtores. In: Proceedings Simpósio Internacional Copersucar, São Paulo, Brazil, 1985.
  • 55
    Finguerut J. Simultaneous production of sugar and alcohol from sugarcane. In: Proceedings XXV International Society of Sugar Cane Technologists (ISSCT), Guatema City, Guatemala, January 30 to February 4; 2005, 315318.
  • 56
    Machado FP. Bubbling fluidized bed at São Martinho should start operating in 2012; 2012. Available at: http://www.jornalcana.com.br/noticia/Bio-Sugar-Magazine/46940+Bubbling-Fluidized-Bed-at-Sao-Martinho-should-start-operating-in-2012. (Accessed May 2, 2012).
  • 57
    Olivério JL, Cogeração: Uma nova fonte de renda para as usinas de açúcar e etanol. In: Proceedings Simpósio Internacional e Mostra de Tecnologia e Energia Canavieira (SIMTEC), Piracicaba, Brazil, July 4, 2008.
  • 58
    Dias MOS, Modesto M, Ensinas AV, Nebra AS, Maciel Filho R, Rossell CEV. Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Energy 2011, 36:36913703.
  • 59
    Seabra JEA, Macedo IC. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy 2011, 39:421428.
  • 60
    Boscolo M. Sucrochemistry: synthesis and potentialities for applications of some sucrose chemical derivatives. Quím Nova 2003, 26:906912.
  • 61
    Côté GL. Flavorings and other value-added products from sucrose. In: Rastall R, ed. Novel Enzyme Technology for Food Applications. Cambridge: Woodhead Publishing; 2007, 243269.
  • 62
    BNDES and CGEE. Sugarcane-based bioethanol: energy for sustainable development. Rio de Janeiro, Brazil: BNDES; 2008, 304. Available at: http://www.sugarcanebioethanol.org/en/download/bioetanol.pdf. (Accessed November 9, 2010).
  • 63
    Amyris. Industrial Production. Available at: http://www.amyris.com/Innovation/156/IndustrialProduction. (Accessed March 29, 2012).
  • 64
    LS9. Technology Overview. Available at: http://www.ls9.com/technology/technology-overview. (Accessed March 29, 2012).
  • 65
    Solazyme. Company/Overview. Available at: http://solazyme.com/company-overview. (Accessed March 29, 2012).
  • 66
    Braskem. Chemicals and Technology. Available at: http://www.chemicals-technology.com/projects/braskem-ethanol/. (Accessed March 29, 2012).
  • 67
    Koller M, Hesse P, Kutschera C, Bona R, Nascimento J, Ortega S, Agnelli JA, Braunegg G. Sustainable embedding of the bioplastic poly(3-hydroxybutyrate) into the sugarcane industry: principles of a future-oriented technology in Brazil. In Eyerer P, Weller M, Hübner C, eds. Polymers—Opportunities and Risks II: Sustainability, Product Design and Processing (The Handbook of Environmental Chemistry). Berlin: Springer; 2009, 8196.
  • 68
    Nonato RV, Mantelatto PE, Rossell CE. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 2001, 57:15.
  • 69
    Pessoa- Jr A, Roberto IC, Menossi M, Santos RR, Ortega Filho S, Penna TCV. Perspectives on bioenergy and biotechnology in Brazil. Appl Microbiol Biotechnol 2005, 121–124:5970.
  • 70
    Biocycle. Biodegradable. Available at: http://www.biocycle.com.br/imprensa_ing_01.htm. (Accessed March 29, 2012).
  • 71
    Sales A, Lima SA. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manage 2010, 30:11141122.
  • 72
    Pandey A, Soccol CR, Nigam P, Soccol VT. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technol 2000, 74:6980.
  • 73
    Walter A, Ensinas AV. Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 2010, 35:874879.
  • 74
    Dias MOS, Cunha MP, Jesus CDF, Rocha GJM, Pradella JGC, Rossell CEV, Filho Maciel R, Bonomi A. Second generation ethanol in Brazil: can it compete with electricity production? Bioresource Technol 2011, 102:89648971.
  • 75
    Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA. Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioproducts Biorefining 2011, 5:519532.
  • 76
    Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresource Technol 2010, 101:15701580.
  • 77
    Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, et al. Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresource Technol 2010, 101:48204825.
  • 78
    Furtado AT, Scandiffio MIG, Cortez LAB. The Brazilian sugarcane innovation system. Energy Policy 2011, 39:156166.
  • 79
    Noschang Neto JN. Etanol de segunda geração. In: Ethanol Summit, São Paulo, Brazil, June 67, 2011.
  • 80
    Seabra JEA, Tao L, Chum HL, Macedo IC. A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenergy 2010, 34:10651078.
  • 81
    Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technol 2012, 103:152161.
  • 82
    Leal MRLV, Walter AC, Seabra JEA. Sugarcane as an energy source. Biomass Conversion Biorefinery 2012, 2:110.
  • 83
    van den Wall Bake JD, Junginger M, Faaij A, Poot T, Walter A. Explaining the experience curve: cost reductions of Brazilian ethanol from sugarcane. Biomass Bioenergy 2009, 33:644658.
  • 84
    Goldemberg J, Coelho ST, Nastari PM, Lucon O. Ethanol learning curve – the Brazilian experience. Biomass Bioenergy 2004, 26:301304.
  • 85
    International Energy Agency. World Energy Outlook 2010. Paris: IEA; 2010.
  • 86
    Duff A. Finance for the sugar & ethanol industry. F.O. In: Licht 8th Annual Sugar & Ethanol Brazil, São Paulo, Brazil, March 26–28, 2012.
  • 87
    International Atomic Energy Agency. Brazil: A Country Profile on Sustainable Energy Development. Vienna: IAEA; 2006.
  • 88
    Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional por Amostra de Domicílios (PNAD) 2009. Rio de Janeiro, Brazil, 2010. Available at: http://www.ibge.gov.br/home/estatistica/populacao/trabalhoerendimento/pnad2009/. (Accessed July 20, 2010).
  • 89
    Guilhoto JJM, Maistro MCM, Barros AMB, Istake M. Emprego e mecanização na colheita da cana-de-açúcar: diferenças regionais. In: XLII Congresso da Sociedade Brasileira de Economia e Sociologia Rural, Cuiabá, Brazil, 2004.
  • 90
    Silva MAM, Martins RC. A degradação social do trabalho e da natureza no contexto da monocultura canaviera paulista. Sociologias 2010, 24:196241.
  • 91
    Alves F. Por que Morrem os Cortadores de Cana? Saúde Soc 2006, 15:9098.
  • 92
    Oliveira FCR, Hoffmann R. Determinantes dos salários dos empregados na lavoura de cana-de-açúcar e em outras atividades agropecuárias no Brasil. Rev Econ Agríc 2011, 58:4156, 2011.
  • 93
    Donzelli JL. Cana-de-açúcar no Brasil—pesquisa, desenvolvimento, produção e sustentabilidade. In: Workshop on Impact of New Technologies on the Sustainability of the Sugarcane/Bioethanol Production Cycle, Campinas, Brazil, May14–15, 2009. Available at: http://www.bioetanol.org.br/workshop3. (Accessed September 12, 2011).
  • 94
    Filho OF. Os desafios da mecanização em cana-de-açúcar. In: II Simpósio Paulista de Mecanização em cana-de-açúcar (SPMEC 2011), Jaboticabal, Brazil, February 22, 2011.
  • 95
    Moraes MAFD. O mercado de trabalho da agroindústria canavieira: desafios e oportunidades. Econ Apli 2007, 11:605619.
  • 96
    Moraes MAFD. Biofuels for social inclusion. In: Global Sustainable Bioenergy (GSB) – Latin American Convention, São Paulo, Brazil, March 24–26, 2010.
  • 97
    Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319:12381240.
  • 98
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science 2008, 319:12351238.
  • 99
    Rosillo-Callé F, Tschirley J. Food versus fuel: setting the scene. In Rosillo-Calle F, Johnson FX, eds. Food versus Fuel—An Informed Introduction to Biofuels. London: Zed Books; 2010.
  • 100
    Adami M, Rudorff BFT, Freitas RM, Aguiar DA, Sugawara LM, Mello MP. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 2012, 4:574585.
  • 101
    Caviglia-Harris JL. Cattle accumulation and land use intensification by households in the Brazilian Amazon. Agric Resource Econ Rev 2005, 34:145162.
  • 102
    Manzatto CV, Assad ED, Bacca JFM, Zaroni MJ, Pereira SEM. (org.) Zoneamento agroecológico da cana-de-açúcar. Rio de Janeiro, Brazil: Embrapa Solos; 2009, 55.
  • 103
    Nassar AM, Harfuch L, Bachion LC, Moreira MR. Biofuels and land-use changes: searching for the top model. Interface Focus 2011, 1:187188.
  • 104
    Marelli L, Mulligan D, Edwards R. Critical issues in estimating ILUC emissions. JRC Scientific and Technical Reports; 2010. Available at: http://publications.jrc.ec.europa.eu/repository/handle/111111111/22908. (Accessed March 21, 2012).
  • 105
    Moreira M, Nassar A, Antoniazzi L, Bachion LC, Harfuch L. Direct and indirect land use change assessment. In Poppe MK, Cortez LAB, eds. Sustainability of Sugarcane Bioenergy. Brasília, Brazil: Center for Strategic Studies and Management; 2012, 183213.
  • 106
    Instituto Brasileiro de Geografia e Estatística. Sistema de Contas Nacionais. Available at: http://www.ibge.gov.br/home/estatistica/economia/contasnacionais/2009/default.shtm. (Accessed April 5, 2012).
  • 107
    Martha GB, Alves E, Contini E. Land-saving approaches and beef production growth in Brazil. Agric Syst 2012, 110:173177.
  • 109
    Cortez LAB, Leal MRLV, Sinkala T. Why biofuels are important. In Rosillo-Calle F, Johnson FX, eds. Food versus Fuel—An Informed Introduction to Biofuels. London: Zed Books; 2010.
  • 108
    Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006. Available at: http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/brasil_2006/Brasil_censoagro2006.pdf. (Accessed Oct 18, 2012).
  • 110
    Doornbosch R, Steenblik R. Biofuels: Is the cure worse than the disease? In: Round Table on Sustainable Development. OECD. Report SG/SD/RT, Paris; 2007.
  • 111
    Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, et al. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, et al. eds. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge: Cambridge University Press; 2011.
  • 112
    Silva JG, Serra GE, Moreira JR, Gonçalves JC, Goldemberg J. Energy balance for ethyl alcohol production from crops. Science 1978, 201:903906.
  • 113
    Nogueira LAH. Análise da utilização de energia na produção de álcool de cana-de-açúcar. PhD Thesis, University of Campinas, Campinas, Brazil; 1987.
  • 114
    Macedo IC. The sugar cane agro-industry and its contribution to reducing CO2 emissions in Brazil. Biomass Bioenergy 1992, 3:7780.
  • 115
    Macedo IC. Greenhouse gas emission and energy balances in bio-ethanol production and utilization in Brazil (1996). Biomass Bioenergy 1998, 14:7781.
  • 116
    Macedo IC, Leal MRLV, Silva JEAR. Balanço das emissões de gases de efeito estufa na produção e no uso do etanol no Brasil. Secretaria do Meio Ambiente, Governo de São Paulo: Produção técnica; April 2004.
  • 117
    Pimentel D, Patzek T. Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. Natural Resource Res 2007, 16:235242.
  • 118
    Wang M, Wu M, Huo H, Liu J. Life-cycle energy use and greenhouse gas emission implications of Brazilian sugarcane ethanol simulated with the GREET model. Int Sugar J 2008, 110:527545.
  • 119
    Macedo IC, Seabra JEA, Silva JEAR. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 2008, 32:582595.
  • 120
    Soares LHB, Alves BJR, Urquiaga S, Boddey RM. Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Circular Técnica 27, Embrapa. Seropédica, RJ; 2009.
  • 121
    Oliveira MED, Vaughan BE, Rykiel EJ Jr. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 2005, 55:593602.
  • 122
    Triana CAR. Energetics of Brazilian ethanol: comparison between assessment approaches. Energy Policy 2011, 39:46054613.
  • 123
    Compeán G, Polenske KR. Antagonistic bioenergies:Technological divergence of the ethanol industry in Brazil. Energy Policy 2011, 39:69516961.
  • 124
    Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discus 2007, 7:1119111205.
  • 125
    Dobbie KE, Smith KA. Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr Cycling Agroecosyst 2003, 67:3746.
  • 126
    Weier Kl, Rolston DE, Thorburn PJ. The potential for N losses via denitrification beneath a greencane trash blanket. In: 20th Proceedings of the Australian Society of Sugar Cane Technologists, Australia; 1998, 169175.
  • 127
    Denmead OT, MacDonald BCT, Naylor T, Wang W, Salter B, White I, Wilson S, Griffith DWT, Moody PW. Whole-of-season greenhouse gas emissions from Australian sugarcane soils. In: 30th Proceedings of the Australian Society of Sugar Cane Technologists, Australia; 2008, 105114.
  • 128
    MacDonald BCT, Denmead OT, White I, Naylor T, Salter B, Wilson S, Griffith DWT. Emissions of nitrogen gases from sugarcane soils. In 31th Proceedings of the Australian Society of Sugar Cane Technologists, Australia; 2009, 8592.
  • 129
    Carmo JBD, Filoso S, Zotelli LC, Sousa Neto ER, Pitombo LM, Vargas VP, Duarte-Neto PJ, Andrade CA, Gava G JC, Rossetto R, et al. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy 2013, 5:267280.
  • 130
    Saggar S, Luo J, Giltrap DL, Maddena M. Nitrous oxide emissions from temperate grasslands: processes, measurements, modeling and mitigation. In Sheldon AI, Barnhart EP, eds. Nitrous Oxide Emissions Research Progress. New York: Nova Science; 2009, 166.
  • 131
    Macedo IC, Seabra JEA. Mitigation of GHG emissions using sugarcane bioethanol. In Zuurbier P, van de Vooren J, eds. Sugarcane Ethanol: Contributions to Climate Change Mitigation and the Environment. Wageningen: Wageningen Academic; 2008, 95111.
  • 132
    Nassar AM, Harfuch L, Moreira MMR, Bachion LC, Antoniazzi LB. Impacts on land use and GHG emissions from a shock on Brazilian sugarcane ethanol exports to the United States using the Brazilian land use model (BLUM). Report to the U.S. Environmental Protection Agency regarding the Proposed Changes to the Renewable Fuel Standard Program. Institute for International Trade Negotiations (ICONE); September 2009.
  • 133
    CARB (Californian Air Resources Board). Detailed California-modified GREET pathways for Brazilian sugarcane ethanol: average Brazilian ethanol, with mechanized harvesting and electricity co-product credit, with electricity co-product credit. Stationary Source Division. California Environmental Protection Agency. Version 2.2; 2009.
  • 134
    EPA (Environmental Protection Agency). Renewable Fuel Standard Program (RFS2) regulatory impact analysis. Assessment and Standards Division, Office of Transportation and Air Quality. EPA-420-R-10-006; February 2010.
  • 135
    Figueiredo EB, La Scala N. Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agric Ecosyst Environ 2011, 141:7785.
  • 136
    Robertson F. Sugarcane trash management: consequences for soil carbon and nitrogen—final report of the project Nutrient Cycling in Relation to Trash Management. CRC Sugar Technical Publication. Townsville: CRC for Sustainable Sugar Production; 2003, 39.
  • 137
    Silver WL, Neff J, McGroddy M, Veldkamp E, Keller M, Cosme R. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian Forest ecosystem. Ecosystems 2000, 3:193209.
  • 138
    Hao X, Kravchenko AN. Management practice effects on surface soil total carbon: differences along a textural gradient. Agronomy J 2007, 99:1826.
  • 139
    Graham MH, Haynes RJ, Meyer JH. Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Eur J Soil Sci 2002, 53:589598.
  • 140
    Wood AW. Management of crop residues following green harvesting of sugarcane in north Queensland. Soil Tillage Res 1991, 20:6985.
  • 141
    Vallis I, Parton WJ, Keating BA, Wood AW. Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil Tillage Res 1996, 38:115132.
  • 142
    Graham MH, Haynes RJ, Zelles LE, Meyer JH. Long-term effects of green cane harvesting versus burning on the size and diversity of the soil microbial community. Proc South African Sugar Technol Asso 2001, 75:228234.
  • 143
    Six J, Conant RT, Paul EA, Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241:155176.
  • 144
    Resende AS, Xavier RP, Oliveira OC, Urquiaga S, Alves B Jr, Boddey RM. Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant Soil 2006, 281:339351.
  • 145
    Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 2011, 62:2328. doi:10.1111/j.1365-2389.2010.01315.x
  • 146
    Pacca S, Moreira JR. Historical carbon budget of the brazilian ethanol program. Energy Policy 2009, 37(11):48634873.
  • 147
    Ometto AR, Hauschild MZ, Roma WNL. Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 2009, 14:236247.
  • 148
    Luo L, van der Voet E, Huppes G. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sustain Energy Rev 2009, 13:16131619.
  • 149
    Robertson MJ, Donaldson RA. Changes in the components of cane and sucrose yield in response to drying-off before harvest. Field Crops Res 1998, 55:201208.
  • 150
    Silva MA, Soares RAB, Landell MGA, Campana MP. Agronomic performance of sugarcane families in response to water stress. Bragantia 2008, 67(3):655661.
  • 151
    van den Berg M, Burrough PA, Driessen PM. Uncertainties in the appraisal of water availability and consequences for simulated sugarcane yield potentials in São Paulo state, Brazil. Agric Ecosyst Environ 2000, 81:4355.
  • 152
    Shrivastava AK, Shrivastava AK, Solomon S. Sustaining sugarcane productivity under depleting water resources. Curr Sci 2011, 101:748754.
  • 153
    Berndes G. Bioenergy and water. The implications of largescale bioenergy production for water use and supply. Global Environ Change 2002, 12:253271.
  • 154
    Martinelli LA, Filoso S. Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 2008, 18:885898.
  • 155
    Agência Nacional de Águas, Federação das Indústrias do Estado de São Paulo, União da Indústria de Cana-de-açúcar, Centro de Tecnologia Canavieira. Manual de conservação e reuso de água na agroindústria sucroenergética. Brasília, Brazil: Agência Nacional de Águas; 2009, 288.
  • 156
    Hellmann F, Verburg PH. Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manage 2010, 91:13891396.
  • 157
    Ewers RM, Didham RK. Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Cambridge Phil Soc 2006, 81:117142.
  • 158
    Smeets E, Junginger M, Faaij A, Walter AC, Dolzan P, Sustainability of Brazilian bio-ethanol. Universiteit Utrecht Copernicus Institute, Department of Science, Technology and Society, the Netherlands and University of Campinas, Brazil, 2006, 136.
  • 159
    Lira-Jorge PK, Tambosi LR, Ewers RM, Metzger JP. Land-use and land-cover change in Atlantic Forest landscapes. Forest Ecol Manage 2012, 278:8089.
  • 160
    Rodrigues RR, Gandolfi S, Nave AG, Aronson J, Barreto TE, Vidal CY, Brancalion PHS. Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. Forest Ecol Manage 2011, 261:16051613.
  • 161
    Pusey BJ, Arthington AH. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine Freshwater Res 2003, 54:116.
  • 162
    Salemi LF, Groppo JD, Trevisan R, Moraes JM, Lima WP, Martinelli LA. Riparian vegetation and water yield: a synthesis. J Hydrol 2012, 454–455:195202.
  • 163
    Chiarello AG. Conservation value of a native forest fragment in a region of extensive agriculture. Rev Bras Biol 2000, 60:237247.
  • 164
    Lyra-Jorge MC, Ciocheti G, Pivello VR. Carnivore mammals in a fragmented landscape in northeast of São Paulo state, Brazil. Biodivers Conserv 2008, 17:15731580.