SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Felix Heinzl, Gerhard Tutz, Additive mixed models with approximate Dirichlet process mixtures: the EM approach, Statistics and Computing, 2014,

    CrossRef

  2. 2
    Daniel Stegmueller, Bayesian hierarchical age-period-cohort models with time-structured effects: An application to religious voting in the US, 1972–2008, Electoral Studies, 2014, 33, 52

    CrossRef

  3. 3
    Alexander Fuchs, Peter Boesiger, Rolf F. Schulte, Anke Henning, ProFit revisited, Magnetic Resonance in Medicine, 2014, 71, 2
  4. 4
    Jakub Stoklosa, Peter Dann, Richard Huggins, Semivarying coefficient models for capture–recapture data: Colony size estimation for the little penguin Eudyptula minor, Mathematical Biosciences, 2014, 255, 43

    CrossRef

  5. 5
    Michael Berlemann, Sören Enkelmann, Torben Kuhlenkasper, UNRAVELING THE RELATIONSHIP BETWEEN PRESIDENTIAL APPROVAL AND THE ECONOMY: A MULTIDIMENSIONAL SEMIPARAMETRIC APPROACH, Journal of Applied Econometrics, 2014, 29, 5
  6. 6
    Antoni Espasa, Maria Durban, Comments on: Short-term forecasting the daily load curve for residential electricity usage in smart grid, Applied Stochastic Models in Business and Industry, 2013, 29, 6
  7. 7
    A.M. Aguilera, M.C. Aguilera-Morillo, Comparative study of different -spline approaches for functional data, Mathematical and Computer Modelling, 2013, 58, 7-8, 1568

    CrossRef

  8. 8
    Xiaolei Xun, Jiguo Cao, Bani Mallick, Arnab Maity, Raymond J. Carroll, Parameter Estimation of Partial Differential Equation Models, Journal of the American Statistical Association, 2013, 108, 503, 1009

    CrossRef

  9. 9
    A.M. Aguilera, M.C. Aguilera-Morillo, Penalized PCA approaches for B-spline expansions of smooth functional data, Applied Mathematics and Computation, 2013, 219, 14, 7805

    CrossRef

  10. 10
    Richard Huggins, Jakub Stoklosa, Semiparametric inference for open populations using the Jolly–Seber model: a penalized spline approach, Journal of Statistical Computation and Simulation, 2013, 83, 9, 1741

    CrossRef

  11. 11
    A.B. Bignardi, L. El Faro, M.L. Santana, G.J.M. Rosa, V.L. Cardoso, P.F. Machado, L.G. Albuquerque, Bayesian analysis of random regression models using B-splines to model test-day milk yield of Holstein cattle in Brazil, Livestock Science, 2012, 150, 1-3, 401

    CrossRef

  12. 12
    Herwig Friedl, Radoslava Mirkov, Ansgar Steinkamp, Modelling and Forecasting Gas Flow on Exits of Gas Transmission Networks, International Statistical Review, 2012, 80, 1
  13. 13
    Aldo Solari, Saskia le Cessie, Jelle J. Goeman, Testing goodness of fit in regression: a general approach for specified alternatives, Statistics in Medicine, 2012, 31, 28