• 1
    Kaplan PD. Frontiers of Modern Asset Allocation. Hoboken, NJ: John Wiley & Sons; 2012.
  • 2
    Box GEP, Draper NR. Empirical Model Building and Response Surfaces. New York: John Wiley & Sons; 1987.
  • 3
    Mandelbrot BB. The variation of certain speculative prices. J Bus 1963, 26:394419.
  • 4
    Samuelson P. Efficient portfolio selection for Pareto-Lévy investments. J Finance Quant Anal 1967, 2:107117.
  • 5
    Rachev ST, Mittnik S. Stable Paretian Models in Finance. New York: Wiley; 2000.
  • 6
    Embrechts P, Klüppelberg C, Mikosch T. Modelling Extreme Events for Insurance and Finance. Berlin: Springer-Verlag; 1997.
  • 7
    McNeil AJ, Frey R, Embrechts P. Quantitative Risk Management. Princeton Series in Finance. Princeton University Press: Princeton, NJ; 2005.
  • 8
    Lévy P. Théorie de l'addition des variables aléatoires. Paris: Gauthier-Villars; 1954 Original edition appeared in 1937.
  • 9
    Hall P. A comedy of errors: the canonical form for a stable characteristic function. Bull Lond Math Soc 1981, 13:2327.
  • 10
    Zolotarev VM. One-Dimensional Stable Distributions. Translations of mathematical monographs, vol. 65. Providence, RI: American Mathematical Society; 1986 Translation from the original 1983 Russian edition.
  • 11
    Samorodnitsky G, Taqqu MS. Stable Non-Gaussian Random Processes. New York: Chapman and Hall; 1994.
  • 12
    Nolan JP. Stable Distributions—Models for Heavy Tailed Data. Birkhäuser, Boston. In preparation. Chapter 1 available at, along with other papers and free software for working with stable laws.
  • 13
    Fofack H, Nolan JP. Tail behavior, modes and other characteristics of stable distributions. Extremes 1999, 2:3958.
  • 14
    Feller W. An Introduction to Probability Theory and Its Applications, vol. 2. 2nd ed. New York: Wiley; 1971.
  • 15
    Nolan JP. Numerical calculation of stable densities and distribution functions. Commun Stat Stochastic Models 1997, 13:759774.
  • 16
    Chambers JM, Mallows CL, Stuck BW. A method for simulating stable random variables. J Am Stat Assoc 1976 Correction in J Am Stat Assoc 82 (1987), 704, 71:340344.
  • 17
    Nikias CL, Shao M. Signal Processing with α-Stable Distributions and Applications. New York: Wiley; 1995.
  • 18
    Fama E, Roll R. Parameter estimates for symmetric stable distributions. J Am Stat Assoc 1971, 66:331338.
  • 19
    McCulloch JH. Simple consistent estimators of stable distribution parameters. Commun Stat Simul Comput 1986, 15:11091136.
  • 20
    Koutrouvelis IA. Regression type estimation of the parameters of stable laws. J Am Stat Assoc 1980, 75:918928.
  • 21
    Kogon SM, Williams DB. Characteristic function based estimation of stable parameters. In: Adler R, Feldman R, Taqqu M, eds. A Practical Guide to Heavy Tailed Data. Boston, MA: Birkhäuser; 1998, 311338.
  • 22
    DuMouchel WH. On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. Ann Stat 1973, 1:948957.
  • 23
    Nolan JP. Maximum likelihood estimation of stable parameters. In: Barndorff-Nielsen OE, Mikosch T, Resnick SI, eds. Lévy Processes: Theory and Applications. Boston: Birkhäuser; 2001, 379400.
  • 24
    Nolan JP, Ojeda-Revah D. Linear and nonlinear regression with stable errors. J Econom 2013, 172:186194.
  • 25
    Broda SA, Haas M, Krause J, Paolella MS, Steude SC. Stable mixture GARCH models. J Econom 2013, 172:292306.
  • 26
    Feldheim E. Etude de la stabilité des lois de probabilité. PhD thesis, Faculté des Sciences de Paris, Paris, France, 1937.
  • 27
    Byczkowski T, Nolan JP, Rajput B. Approximation of multidimensional stable densities. J Multivar Anal 1993, 46:1331.
  • 28
    Kurowicka D, Joe H, eds. Dependence Modeling: Vine Copula Handbook. Hackensack, NJ: World Scientific Publishing Company; 2011.
  • 29
    Nolan JP, Rajput B. Calculation of multidimensional stable densities. Commun Stat Simul 1995, 24:551556.
  • 30
    Abdul-Hamid H, Nolan JP. Multivariate stable densities as functions of one dimensional projections. J Multivar Anal 1998, 67:8089.
  • 31
    Modarres R, Nolan JP. A method for simulating stable random vectors. Comput Stat 1994, 9:1119.
  • 32
    Cheng BN, Rachev ST. Multivariate stable securities in financial markets. Math Finance 1995, 5:133153.
  • 33
    Rachev ST, Xin H. Test for association of random variables in the domain of attraction of multivariate stable law. Probab Math Stat 1993, 14:125141.
  • 34
    Nolan JP, Panorska A, McCulloch JH. Estimation of stable spectral measures. Math Comput Model 2001, 34:11131122.
  • 35
    Nolan JP. Multivariate elliptically contoured stable distributions: theory and estimation. Comput Stat. In press.
  • 36
    Hult H, Lindskog F. Multivariate extremes, aggregation and dependence in elliptical distributions. Adv Appl Probab 2002, 34:587608.