Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as Förster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero-mode waveguides (ZMW) and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometer scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET, and FCS. Single molecule spectroscopy techniques greatly benefit from ZMW and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.

For further resources related to this article, please visit the WIREs website.

Conflict of interest: The authors have declared no conflicts of interest for this article.