Tree rings and multiseason drought variability in the lower Rio Grande Basin, USA

Authors


Corresponding author: C. A. Woodhouse, School of Geography and Development, 1103 E. 2nd St., Room 409, University of Arizona, Tucson, AZ 85721-0076, USA. (conniew1@email.arizona.edu)

Abstract

[1] Agriculture and ranching in semiarid regions often rely on local precipitation during the growing season as well as streamflow from runoff in distant headwaters. Where snowpack and reservoir storage are important, this pattern of reliance leads to vulnerability to multiseason drought. The lower Rio Grande basin in New Mexico, used as a case study here, has experienced drought conditions over the past 12 years characterized both by low local summer monsoon precipitation and by reduced availability of surface water supplies from the upper Rio Grande. To place this drought in a long-term context, we evaluate the covariability of local warm-season and remote cool-season hydroclimate over both the modern period and past centuries. We draw on a recently developed network of tree-ring data that allows an assessment of preinstrumental warm-season variations in precipitation over the southwest. Both instrumental and paleoclimatic data suggest that low runoff followed by a dry monsoon is not unusual, although over the full reconstruction period (1659–2008), years with wet or dry conditions shared in both seasons do not occur significantly more often than unshared conditions. Low flows followed by dry monsoon conditions were most persistent in the 1770s and 1780s; other notable periods of shared seasonal droughts occurred in the 1660s and 1950s. The recent drought does not yet appear to be unusually severe in either the instrumental or paleoclimatic context.

Ancillary