SEARCH

SEARCH BY CITATION

References

  • Agam, N., W. P. Kustas, M. C. Anderson, J. M. Norman, P. D. Colaizzi, T. A. Howell, J. H. Prueger, T. D. Meyers, and T. B. Wilson (2010), Application of the Priestley-Taylor approach in a two-source surface energy balance model, J. Hydrometeorol., 11(1), 185198.
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrig. and Drainage Pap. 56. United Nations Food and Agric. Organ., Rome.
  • Allen, R. G., M. Tasumi, and R. Trezza (2007), Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model, J. Irrig. Drain. Eng., 133(4), 380394.
  • Anderson, M. C., J. M. Norman, W. P. Kustas, F. Li, J. H. Prueger, and J. R. Mecikalski (2005), Effects of vegetation clumping on two-source model estimates of surface energy fluxes from an agricultural landscape during SMACEX, J. Hydrometeorol., 6(6), 892909.
  • Anderson, M. C., J. M. Norman, J. R. Mecikalski, J. A. Otkin, and W. P. Kustas (2007), A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, doi:10.1002/2006JD007506.
  • Bastiaanssen, W. G. M. (2000), SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, J. Hydrol., 229(1–2), 87100.
  • Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag (1998), A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 213(1–4), 198212.
  • Bastiaanssen, W. G. M., M.-D. Ahmad, and Y. Chemin (2002), Satellite surveillance of evaporative depletion across the Indus Basin, Water Resour. Res., 38(12), 1273, doi:10.1002/2001WR000386.
  • Bastiaanssen, W. G. M., E. J. M. Noordman, H. Pelgrum, G. Davids, B. P. Thoreson, and R. G. Allen (2005), SEBAL model with remotely sensed data to improve water-resources management under actual field conditions, J. Irrig. Drain. Eng., 131(1), 8593.
  • Bastiaanssen, W., B. Thoreson, B. Clark, and G. Davids (2010), Discussion of “Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in South-Central Nebraska” by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin, J. Irrig. Drain. Eng., 136(4), 282283.
  • Batra, N., S. Islam, V. Venturini, G. Bisht, and J. Jiang (2006), Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains, Remote Sens. Environ., 103(1), 115.
  • Carlson, T. (2007), An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery, Sensors, 7(8), 16121629.
  • Carlson, T. N., W. J. Capehart, and R. R. Gillie (1995a), A new look at the simplified method for remote-sensing of daily evapotranspiration, Remote Sens. Environ., 54(2), 161167.
  • Carlson, T. N., R. R. Gillies, and T. J. Schmugge (1995b), An interpretation of methodologies for indirect measurement of soil-water content, Agric. For. Meteorol., 77(3–4), 191205.
  • Carlson, T. N., O. Taconet, A. Vidal, R. R. Gilles, A. Olioso, and K. Humes (1995c), An overview of the workshop on thermal remote-sensing held at La-Londe-les-Maures, France, September 20–24, 1993, Agric. For. Meteorol., 77(3–4), 141151.
  • Choi, M., W. P. Kustas, M. C. Anderson, R. G. Allen, F. Q. Li, and J. H. Kjaersgaard (2009), An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, US) during SMACEX, Agric. For. Meteorol., 149(12), 20822097.
  • French, A. N., T. J. Schmugge, W. P. Kustas, K. L. Brubaker, and J. Prueger (2003), Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data, Water Resour. Res., 39(6), doi:10.1002/2002WR001734.
  • French, A. N., et al. (2005a), Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sens. Environ., 99(1–2), 5565.
  • French, A. N., et al. (2005b), Corrigendum to “Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA) (vol 99, pg 55, 2005)”, Remote Sens. Environ., 99(4), 471471.
  • Gao, Y. C., and D. Long (2008), Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT, Hydrol. Process., 22(25), 48504869.
  • Gillies, R. R., T. N. Carlson, J. Cui, W. P. Kustas, and K. S. Humes (1997), A verification of the ‘triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature, Int. J. Remote Sens., 18(15), 31453166.
  • Gonzalez-Dugo, M. P., C. M. U. Neale, L. Mateos, W. P. Kustas, J. H. Prueger, M. C. Anderson, and F. Li (2009), A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agric. For. Meteorol., 149(11), 18431853.
  • Jiang, L., and S. Islam (2001), Estimation of surface evaporation map over southern Great Plains using remote sensing data, Water Resour. Res., 37(2), 329340.
  • Jiang, L., S. Islam, W. Guo, A. S. Jutla, S. U. S. Senarath, B. H. Ramsay, and E. A. B. Eltahir (2009), A satellite-based daily actual evapotranspiration estimation algorithm over South Florida, Global Planet. Change, 67(1–2), 6277.
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29(4–5), 421469.
  • Kustas, W., and M. Anderson (2009), Advances in thermal infrared remote sensing for land surface modeling, Agric. For. Meteorol., 149(12), 20712081.
  • Kustas, W. P., J. L. Hatfield, and J. H. Prueger (2005), The soil moisture-atmosphere coupling experiment (SMACEX): Background, hydrometeorological conditions, and preliminary findings, J. Hydrometeorol., 6(6), 791804.
  • Kustas, W. P., M. C. Anderson, J. M. Norman, and F. Q. Li (2007), Utility of radiometric-aerodynamic temperature relations for heat flux estimation, Bound.-Layer Meteorol., 122(1), 167187.
  • Li, F. Q., T. J. Jackson, W. P. Kustas, T. J. Schmugge, A. N. French, M. H. Cosh, and R. Bindlish (2004), Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX, Remote Sens. Environ., 92(4), 521534.
  • Li, F. Q., W. P. Kustas, M. C. Anderson, J. H. Prueger, and R. L. Scott (2008), Effect of remote sensing spatial resolution on interpreting tower-based flux observations, Remote Sens. Environ., 112(2), 337349.
  • Long, D., and V. P. Singh (2010), Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales, J. Geophys. Res., 115, D21128, doi:10.1002/2010JD014092.
  • Long, D., Y. C. Gao, and V. P. Singh (2010), Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days, J. Hydrol., 388(3–4), 217233.
  • Long, D., V. P. Singh, and Z.-L. Li (2011), How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?, J. Geophys. Res., 116, doi:10.1029/2011JD016542.
  • Long, D., and V. P. Singh (2012a), A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery, Remote Sens. Environ., 121, 370388.
  • Long, D., and V. P. Singh (2012b), A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework, Water Resour. Res., 48, W02528, doi:10.1029/2011WR010607.
  • Mackay, D. S., B. E. Ewers, B. D. Cook, and K. J. Davis (2007), Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin, Water Resour. Res., 43, W03442, doi:10.1029/2006WR005149.
  • Marx, A., H. Kunstmann, D. Schuttemeyer, and A. F. Moene (2008), Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results, Agric. For. Meteorol., 148(4), 656667.
  • McCabe, M. F., and E. F. Wood (2006), Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors, Remote Sens. Environ., 105(4), 271285.
  • McVicar, T. R., and D. L. B. Jupp (1998), The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review, Agric. Syst., 57(3), 399468.
  • McVicar, T. R., and D. L. B. Jupp (1999), Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models, Agric. For. Meteorol., 96(4), 219238.
  • McVicar, T. R., and D. L. B. Jupp (2002), Using covariates to spatially interpolate moisture availability in the Murray-Darling Basin—A novel use of remotely sensed data, Remote Sens. Environ., 79(2–3), 199212.
  • McVicar, T. R., et al. (2012), Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrol., 416, 182205.
  • Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal (1994), Estimating crop water-deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ., 49(3), 246263.
  • Norman, J. M., W. P. Kustas, and K. S. Humes (1995), A two-source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface-temperature, Agric. For. Meteorol., 77(3–4), 263293.
  • Norman, J. M., M. C. Anderson, W. P. Kustas, A. N. French, J. Mecikalski, R. Torn, G. R. Diak, T. J. Schmugge, and B. C. W. Tanner (2003), Remote sensing of surface energy fluxes at 10(1)-m pixel resolutions, Water Resour. Res., 39(8), 1221, doi:10.1029/2002WR001775.
  • Price, J. C. (1990), Using spatial context in satellite data to infer regional scale evapotranspiration, IEEE Trans. Geosci. Remote Sens., 28(5), 940948.
  • Prueger, J. H., J. L. Hatfield, W. P. Kustas, L. E. Hipps, J. I. MacPherson, C. M. U. Neale, W. E. Eichinger, D. I. Cooper, and T. B. Parkin (2005), Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX, J. Hydrometeorol., 6(6), 954960.
  • Roerink, G. J., Z. Su, and M. Menenti (2000), S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Phys. Chem. Earth B, 25(2), 147157.
  • Sandholt, I., K. Rasmussen, and J. Andersen (2002), A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sens. Environ., 79(2–3), 213224.
  • Schellekens, J., F. N. Scatena, L. A. Bruijnzeel, and A. J. Wickel (1999), Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico, J. Hydrol., 225(3–4), 168184.
  • Su, Z. (2002), The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci., 6(1), 8599.
  • Tang, R. L., Z. L. Li, and B. H. Tang (2010), An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in and and semi-arid regions: Implementation and validation, Remote Sens. Environ., 114(3), 540551.
  • Tasumi, M. (2003), Progress in operational estimation of regional evapotranspiration using satellite imagery, Ph.D. dissertation. Dept. Biological and Agricultural Engineering, University of Idaho, Moscow, Idaho, 357 p.
  • Timmermans, W. J., W. P. Kustas, M. C. Anderson, and A. N. French (2007), An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes, Remote Sens. Environ., 108(4), 369384.
  • Van Niel, T. G., T. R. McVicar, M. L. Roderick, A. I. J. M. van Dijk, L. J. Renzullo, and E. van Gorsel (2011), Correcting for systematic error in satellite-derived latent heat flux due to assumptions in temporal scaling: Assessment from flux tower observations, J. Hydrol., 409(1–2), 140148.
  • Verstraeten, W. W., F. Veroustraete, and J. Feyen (2005), Estimating evapotranspiration of European forests from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products, Remote Sens. Environ., 96(2), 256276.
  • Verstraeten, W. W., F. Veroustraete, and J. Feyen (2008), Assessment of evapotranspiration and soil moisture content across different scales of observation, Sensors, 8(1), 70117.
  • Wang, J., T. W. Sammis, V. P. Gutschick, M. Gebremichael, and D. R. Miller (2009), Sensitivity analysis of the surface energy balance algorithm for land (SEBAL), T ASABE, 52(3), 801–811.
  • Yang, Y., and S. Shang (2013), A hybrid dual source scheme and trapezoid framework based evapotranspiration model (HTEM) using satellite images: Algorithm and model test, J. Geophys. Res., 118, doi:10.1002/jgrd.50259.