SEARCH

SEARCH BY CITATION

References

  • Alkan, H., Y. Cinar, and E. B. Ulker (2010), Impact of capillary pressure, salinity and in situ conditions on CO2 injection into saline aquifers, Transp. Porous Media, 84, 799819.
  • Anderson, W. G. (1986), Wettability literature survey. Part 2: Wettability measurement, J. Pet. Technol., 38(12), 12461262.
  • Bachu, S., and D. B. Bennion (2009), Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) degrees C, and water salinity from (0 to 334 000) mg L−1, J. Chem. Eng. Data, 54(3), 765775.
  • Bachu, S., D. Bonijoly, J. Bradshaw, R. Burruss, S. Holloway, N. P. Christensen, and O. M. Mathiassen (2007), CO2 storage capacity estimation: Methods and gaps, Int. J. Greenhouse Gas Control, 1, 430443.
  • Batzle, M., and Z. Wang (1992), Seismic properties of pore fluids, Geophysics, 57(11), 13961408.
  • Bennion, D. B., and S. Bachu (2008), Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, carbonate, shale, and anhydrite rocks, SPE Reserv. Eval. Eng., 11(3), 487496.
  • Bennion, D. B., and S. Bachu (2010), Drainage and imbibition CO2/brine relative permeability curves at reservoir conditions for carbonate formations, in SPE Annual Technical Conference and Exhibition, p. 18, Soc. of Pet. Eng., Florence, Italy.
  • Benson, S. M., and D. R. Cole (2008), CO2 sequestration in deep sedimentary formations, Elements, 4, 325331.
  • Bernabe, Y., U. Mok, and B. Evans (2003), Permeability-porosity relationships in rocks subjected to various evolution processes, Pure Appl. Geophys., 160, 937960.
  • Bikkina, P. K. (2011), Contact angle measurements of CO2-water-quartz/calcite systems in the perspective of carbon sequestration, Int. J. Greenhouse Gas Control, 5, 12591271.
  • Bikkina, P. K. (2012), Reply to the comments on “Contact angle measurements of CO2-water-quartz/calcite systems in the perspective of carbon sequestration,” Int. J. Greenhouse Gas Control., 7, 263264.
  • Bradford, S. A., and F. J. Leij (1996), Predicting two- and three-fluid capillary pressure-saturation relationships of porous media with fractional wettability, Water Resour. Res., 32(2), 251259.
  • Broseta, D., N. Tonnet, and V. Shah (2012), Are rocks still water-wet in the presence of dense CO2 or H2S?, Geofluids, 12(4), 280294.
  • Chalbaud, C., M. Robin, J.-M. Lombard, H. Bertin, and P. Egermann (2010), Brine/CO2 interfacial properties and effects on CO2 storage in deep saline aquifers, Oil Gas Sci. Technol., 65(4), 541555.
  • Chiquet, P., D. Broseta, and S. Thibeau (2007a), Wettability alteration of caprock minerals by carbon dioxide, Geofluids, 7(2), 112122.
  • Chiquet, P., J. L. Daridon, D. Broseta, and S. Thibeau (2007b), CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage, Energy Convers. Manage., 48(3), 736744.
  • Delclaud, J. (1991), Laboratory measurement of residual gas saturation, in Second European Core Analysis Symposium, pp. 431451, London.
  • Demond, A. H., and P. V. Roberts (1991), Effect of interfacial forces on two-phase capillary pressure-saturation relations, Water Resour. Res., 27(3), 423437.
  • Desouky, S. E. D. M. (2003), A new method for normalization of capillary pressure curves, Oil Gas Sci. Technol., 58(5), 551556.
  • Dickson, J. L., G. Gupta, T. S. Horozov, B. P. Binks, and K. P. Johnston (2006), Wetting phenomena at the CO2/water/glass interface, Langmuir, 22(5), 21612170.
  • Doughty, C. (2007), Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves, Energy Convers. Manage., 48(6), 17681781.
  • Dullien, F. A. L. (1992), Porous Media Fluid Transport and Pore Structure, 2nd ed., 574 pp., Academic, San Diego, Calif.
  • Dullien, F. A. L., C. Zarcone, I. F. Macdonald, A. Collins, and R. D. E. Bochard (1989), The effects of surface-roughness on the capillary-pressure curves and the heights of capillary rise in glass bead packs, J. Colloid Interface Sci., 127(2), 362372.
  • Garrouch, A. A. (1999), A modified Leverett J-function for the Dune and Yates carbonate fields: A case study, Energy Fuels, 13(5), 10211029.
  • Gittins, P., S. Iglauer, C. H. Pentland, S. Al-Mansoori, S. Al-Sayari, B. Bijeljic, and M. J. Blunt (2010), Nonwetting phase residual saturation in sand packs, J. Porous Media, 13(7), 591599.
  • Haines, W. B. (1930), Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith, J. Agric. Sci., 20, 97116.
  • Ide, S. T., K. Jessen, and F. M. J. Orr (2007), Storage of CO2 in saline aquifers: Effects of gravity, viscous, and capillary forces on amount and timing of trapping, Int. J. Greenhouse Gas Control, 1, 481491.
  • Iglauer, S., A. Paluszny, C. H. Pentland, and M. J. Blunt (2011a), Residual CO2 imaged with X-ray micro-tomography, Geophys. Res. Lett., 38, L21403, doi:10.1029/2011GL049680.
  • Iglauer, S., W. Wulling, C. H. Pentland, S. K. Al-Mansoori, and M. J. Blunt (2011b), Capillary-trapping capacity of sandstones and sandpacks, SPE J., 16(4), 778783.
  • Iglauer, S., M. S. Mathew, and F. Bresme (2012), Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration, J. Colloid Interface Sci., 386, 405414.
  • Intergovernmental Panel on Climate Change (IPCC) (2005), Underground geological storage, in IPCC Special Report on Carbon Dioxide Capture and Storage, pp. 195276, Cambridge Univ. Press, Cambridge.
  • Jadhunandan, P. P., and N. R. Morrow (1995), Effect of wettabiity on waterflood recovery for crude-oil/brine/rock systems, SPE Reservoir Engineering, 10(1), 4046.
  • Juanes, R., C. W. MacMinn, and M. L. Szulczewski (2010), The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: Storage efficiency for capillary trapping at the basin scale, Transp. Porous Media, 82(1), 1930.
  • Jung, J.-W., and J. Wan (2012), Supercritical CO2 and ionic strength effects on wettability of silica surfaces: Equilibrium contact angle measurements, Energy Fuels, 26, 60536059.
  • Kaszuba, J. P., D. R. Janecky, and M. G. Snow (2003), Carbon dioxide reaction processes in a model brine aquifer at 200 degrees C and 200 bars: Implications for geologic sequestration of carbon, Appl. Geochem., 18(7), 10651080.
  • Kharaka, Y. K., D. R. Cole, S. D. Hovorka, W. D. Gunter, K. G. Knauss, and B. M. Freifeld (2006), Gas-water-rock interactions in Frio formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology, 34(7), 577580.
  • Kim, T. W., T. K. Tokunaga, D. B. Shuman, S. R. Sutton, M. Newville, and A. Lanzirotti (2012), Thickness measurements of nanoscale brine films on silica surfaces under geologic CO2 sequestration conditions using synchrotron X-ray fluorescence, Water Resour. Res., 48, W09558, doi:10.1029/2012WR012200.
  • Kim, Y., J. Wan, T. J. Kneafsey, and T. K. Tokunaga (2012), Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels, Environ. Sci. Technol., 46, 42284235.
  • Klute, A., and G. E. Wilkinson (1958), Some tests of the similar media concept of capillary flow: 1. Reduced capillary conductivity and moisture characteristic data, Soil Sci. Soc. Proc., 22, 278281.
  • Krevor, S. C. M., R. Pini, B. X. Li, and S. M. Benson (2011), Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions, Geophys. Res. Lett., 38, L15401, doi:10.1029/2011GL048239.
  • Leverett, M. C. (1941), Capillary behavior in porous solids, Trans. Am. Inst. Min. Metal. Eng., 142, 152169.
  • Leverett, M. C., W. B. Lewis, and M. E. True (1942), Dimensional-model studies of oil-field behavior, Trans. Am. Inst. Min. Metal. Eng., 146, 175193.
  • Li, X., E. Boek, G. C. Maitland, and J. P. M. Trusler (2012), Interfacial tension of (brines + CO2): (0.864 NaCl + 0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) mol · kg−1, J. Chem. Eng. Data, 57(4), 10781088.
  • Liu, S. Y., X. N. Yang, and Y. Qin (2010), Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces, Chin. Sci. Bull., 55(21), 22522257.
  • Mahadevan, J. (2012), Comments on the paper titled “Contact angle measurements of CO2-water-quartz/calcite systems in the perspective of carbon sequestration”: A case of contamination?, Int. J. Greenhouse Gas Control, 7, 261262.
  • Mathias, S. A., J. G. Gluyas, G. J. Gonzalez Martinez de Miguel, S. L. Bryant, and D. Wilson (2013), On relative permeability data uncertainty and CO2 injectivity estimation for brine aquifers, Int. J. Greenhouse Gas Control, 12, 200212.
  • McCool, B., and C. P. Tripp (2005), Inaccessible hydroxyl groups on silica are accessible in supercritical CO2, J. Phys. Chem. B, 109(18), 89148919.
  • Miller, E. E., and R. D. Miller (1956), Physical theory for capillary flow phenomena, J. Appl. Phys., 4, 324332.
  • Mills, J., M. Riazi, and M. Sohrabi (2011), Wettability of common rock-forming minerals in a CO2-brine system at reservoir conditions, in Society of Core Analysts, p. 12, Soc. of Core Anal., Austin, Tex.
  • Morrow, N. R. (1975), The effects of surface roughness on contact angle with special reference to petroleum recovery, J. Can. Pet. Technol., 14(4), 4253.
  • Moseley, W. A., and V. K. Dhir (1996), Capillary pressure-saturation relations in porous media including the effect of wettability, J. Hydrol., 178, 3353.
  • O'Carroll, D. M., L. M. Abriola, C. A. Polityka, S. A. Bradford, and A. H. Demond (2006), Prediction of two-phase capillary pressure-saturation relationships in fractional wettability systems, J. Contam. Hydrol., 77, 247270.
  • Oldenburg, C. M., and C. Doughty (2011), Injection, flow, and mixing of CO2 in porous media with residual gas, Transp. Porous Media, 90, 201218.
  • Or, D., and M. Tuller (2000), Flow in unsaturated fractured porous media: Hydraulic conductivity of rough surfaces, Water Resour. Res., 36(5), 11651177.
  • Parker, J. C., R. J. Lenhard, and T. Kuppusamy (1987), A parametric model for constitutive properties governing multiphase flow in porous media, Water Resour. Res., 23(4), 618624.
  • Parlange, J.-Y. (1974), Scaling by contact angle, Soil Sci. Soc. Am. Proc., 38, 161162.
  • Pentland, C. H., S. Al-Mansoori, S. Iglauer, B. Bijeljic, and M. J. Blunt (2008), Measurement of non-wetting phase trapping in sand packs, in SPE Annual Technical Conference and Exhibition, p. 11, SPE, Denver, Colo.
  • Pentland, C. H., R. El-Maghraby, S. Iglauer, and M. J. Blunt (2011), Measurements of the capillary trapping of supercritical carbon dioxide in Berea sandstone, Geophys. Res. Lett., 38, L06401, doi:10.1029/2011GL046683.
  • Perrin, J. C., and S. M. Benson (2010), An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks, Transp. Porous Media, 82, 93109.
  • Philip, J. R. (1969), Theory of Infiltration, edited by V. T. Chow, pp. 215296, Academic, New York.
  • Philip, J. R. (1971), Limitations on scaling by contact angle, Soil Sci. Soc. Am. Proc., 35, 507509.
  • Pini, R., S. C. M. Krevor, and S. M. Benson (2012), Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions, Adv. Water Resour., 38, 4859.
  • Plug, W. J., and J. Bruining (2007), Capillary pressure for the sand-CO2-water system under various pressure conditions. Application to CO2 sequestration, Adv. Water Resour., 30(11), 23392353.
  • Rose, W., and W. A. Bruce (1949), Evaluation of capillary character in petroleum reservoir rock, Trans. Am. Inst. Min. Metal. Eng., 186(5), 127142.
  • Schroth, M. H., S. J. Ahearn, J. S. Selker, and J. D. Istok (1996), Characterization of Miller-similar silica sands for laboratory hydrologic studies, Soil Sci. Soc. Am. J., 60, 13311339.
  • Selker, J. S., and M. H. Schroth (1998), Evaluation of hydrodynamic scaling in porous media using finger dimensions, Water Resour. Res., 34(8), 19351940, doi:10.1029/98WR00625.
  • Shao, H., J. R. Ray, and Y. S. Jun (2011), Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation, Environ. Sci. Technol., 45(4), 17371743.
  • Span, R., and W. Wagner (1996), A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25(6), 15091596.
  • Spiteri, E. J., R. Juanes, M. J. Blunt, and F. M. J. Orr (2008), A new model of trapping and relative permeability hysteresis for all wettability characteristics, SPE J., 13(3), 277288.
  • Tanino, Y., and M. J. Blunt (2012), Capillary trapping in sandstones and carbonates: Dependence of pore structure, Water Resour. Res., 48, W08525, doi:10.1029/2011WR011712.
  • Tokunaga, T. K. (2012), DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs, Langmuir, 28(21), 80018009.
  • Tokunaga, T. K., and D. B. Shuman (2010), A Method to Control Low Capillary Pressure Differences Over Arbitrarily High Total Pressures, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Tokunaga, T. K., J. Wan, and K. R. Olson (2002), Saturation-matric potential relations in gravel, Water Resour. Res., 38, 1214, doi:10.1029/2001WR001242.
  • Tokunaga, T. K., K. R. Olson, and J. Wan (2003), Moisture characteristics of Hanford gravels: Bulk, grain-surface, and intragranular components, Vadose Zone J., 2, 322329.
  • Tokunaga, T. K., K. R. Olson, and J. Wan (2004), Conditions necessary for capillary hysteresis in porous media: Tests of grain size and surface tension influences, Water Resour. Res., 40, WO5111, doi:10.1029/2003WR002908.
  • Tripp, C. P., and J. R. Combes (1998), Chemical modification of metal oxide surfaces in supercritical CO2: The interaction of supercritical CO2 with the adsorbed water layer and the surface hydroxyl groups of a silica surface, Langmuir, 14(26), 73507352.
  • Valvatne, P. H., and M. J. Blunt (2004), Predictive pore-scale modeling of two-phase flow in mixed wet media, Water Resour. Res., 40, W07406, doi:10.1029/2003WR002627.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Wang, S., I. M. Edwards, and A. F. Clarens (2013), Wettability phenomena at the CO2-brine-mineral interface: Implications for geologic carbon sequestration, Environ. Sci. Technol., 47(1), 234241.
  • Weast, R. C. (Ed.) (1977), CRC Handbook of Chemistry and Physics, 58 ed., F-43 pp., CRC Press, Cleveland, Ohio.
  • Zhou, Q. L., J. T. Birkholzer, E. Mehnert, Y. F. Lin, and K. Zhang (2010), Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment, Ground Water, 48(4), 494514.