SEARCH

SEARCH BY CITATION

References

  • Abbasi, F., J. Feyen, and M. T. Van Genuchten (2004), Two-dimensional simulation of water flow and solute transport below furrows: Model calibration and validation, J. Hydrol., 290(1), 6379.
  • Carrera-Hernández, J.J., B.D. Smerdon, and C.A. Mendoza (2012), Estimating groundwater recharge through unsaturated flow modelling: Sensitivity to boundary conditions and vertical discretization, J. Hydrol., 452–453, 90101, doi:10.1016/j.jhydrol.2012.05.039.
  • Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26(7), 14831496.
  • Chung, S. O., and R. Horton (1987), Soil heat and water flow with a partial surface mulch, Water Res. Res., 23(12), 21752186.
  • De Vries, J. J., and I. Simmers (2002), Groundwater recharge: An overview of processes and challenges, Hydrogeol. J., 10(1), 517.
  • Durner, W. (1994), Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res., 30(2), 211224.
  • Environment Canada (2002), Canadian daily climate data, CDCD V1.01, Climate Information Branch, Atmos. Environ. Serv., Ottawa, Ont., Canada.
  • Environmental Systems Research Institute (ESRI) (2011), ArcGIS Desktop: Release 10, Redlands, Calif.
  • Feddes, R. A., P. J. Kowalik, H. Zaradny (1978), Simulation of Field Water Use and Crop Yield, John Wiley & Sons, New York, NY.
  • Gogolev, M. I. (2002), Assessing groundwater recharge with two unsaturated zone modeling technologies, Environ. Geol., 42(2), 248258.
  • Hansson, K., J. Šimŭnek, M. Mizoguchi, L. C. Lundin, and M. T. Van Genuchten (2004), Water flow and heat transport in frozen soil numerical solution and freeze–thaw applications, Vadose Zone J., 3(2), 693704.
  • Hejazi, A., and A. D. Woodbury (2011), Evaluation of land surface scheme SABAE-HW in simulating snow depth, soil temperature and soil moisture within the BOREAS site, Saskatchewan, Atmos. Ocean, 49(4), 408420.
  • Holländer, H. M., T. Blume, H. Bormann, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, P. Kraft, C. Stamm, et al. (2009), Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data, Hydrol. Earth Syst. Sci., 13, 20692094, doi:10.5194/hess-13-2069-2009.
  • Jimenez-Martinez, J., T. H. Skaggs, M. Th. van Genuchten, and L. Candela (2009), A root zone modelling approach to estimating groundwater recharge from irrigated areas, J. Hydrol., 367, 138149.
  • Jyrkama, M. I., and J. F. Sykes (2007), The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario), J. Hydrol., 338(3–4), 237250.
  • Jyrkama, M. I., J. F. Sykes, and S. D. Normani (2002), Recharge estimation for transient ground water modeling, Ground Water, 40(6), 638648.
  • Kenny, E., and G. Frank (2010), Creating a seamless soil data set Okanagan British Columbia, paper presented at Western Region National Cooperative Soil Survey Conference, Las Vegas, Nev.
  • Khire, M. V., C. H. Benson, and P. J. Bosscher (1997), Water balance modeling of earthen final covers, J. Geotech. Geoenviron. Eng., 123(8), 744754.
  • Kosugi, K. (1994), Three-parameter lognormal distribution model for soil water, Water Resour. Res., 30(4), 891901.
  • Kurtzman, D., and B. R. Scanlon (2011), Groundwater recharge through vertisols: Irrigated cropland vs. natural land, Israel, Vadose Zone J., 10(2), 662674, doi:10.2136/vzj2010.0109.
  • Lerner, D. N., A. S. Issar, and I. Simmers (1990), Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge, Heise, Hannover, Germany.
  • Liggett, J. E., and D. M. Allen (2010), Comparing approaches for modeling spatially distributed direct recharge in a semi-arid region (Okanagan Basin, Canada), Hydrogeol. J., 18(2), 339357.
  • Lu, X., M. Jin, M. Th. van Genuchten, and B. Wang (2011), Ground water recharge at five representative sites in the Hebei Plain of China: Case study, Ground Water, 49(2), 286294.
  • Mastrociccoa, M., N. Colombania, E. Salemia, and G. Castaldelli (2010), Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands, Agric. Water Manage., 97, 13891398, doi:10.1016/j.agwat.2010.04.005.
  • Monteith, J. L. (1965), Evaporation and environment, in The State and Movement of Water in Living Organisms, edited by G. E. Fogg, Symp. Soc. Exp. Biol, vol. 19, pp. 205234, The Company of Biologists, Cambridge, U. K.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513522.
  • Neilsen, D., G. Duke, W. Taylor, J. Byrne, S. Kienzle, and T. Van der Gulik (2010), Development and verification of daily gridded climate surfaces in the Okanagan Basin of British Columbia, Can. Water Res. J., 35(2), 131154.
  • Ping, J., C. Nichol, and X. Wei (2010), Numerical groundwater modeling in the Deep Creek watershed (Final), 208 pp., B. C. Minist. of Environ., Penticton, B. C., Canada.
  • Samani, Z. (2000), Estimating solar radiation and evapotranspiration using minimum climatological data (Hargreaves-Samani Equation), J. Irrig. Drain. Eng., 126(4), 265267.
  • Sanford, W. (2002), Recharge and groundwater models: An overview, Hydrogeol. J., 10(1), 110120.
  • Scanlon, B. R., R. W. Healy, and P. G. Cook (2002), Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeol. J., 10(1), 1839.
  • Scanlon, B. R., K. Keese, R. C. Reedy, J. Simunek, and B. J. Andraski (2003), Variations in flow and transport in thick desert Vadose zones in response to paleoclimatic forcing (0–90 Kyr): Field measurements, modeling, and uncertainties, Water Resour. Res., 39(7), 1179, doi:10.1029/2002WR001604.
  • Schaap, M. G., F. J. Leij, and M. T. van Genuchten (2001), ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251(3), 163176.
  • Scharnagl, B., J. A. Vrugt, H. Vereecken, and M. Herbst (2011), Bayesian inverse modelling of in situ soil water dynamics: Using prior information about the soil hydraulic properties, Hydrol. Earth Syst. Sci. Discus., 8(1), 20192063, doi:10.5194/hessd-8–2019-2011.
  • Schroeder, P. R., and D. C. Ammon (1994), The Hydrologic Evaluation of Landfill Performance (HELP) Model: User's Guide for Version 1, Risk Reduction Engineering Laboratory, Office of Research and Development, US Environ. Protect. Agency, Cincinnati, OH.
  • Scott, R. L., W. J. Shuttleworth, T. O. Keefer, and A. W. Warrick (2000), Modeling multiyear observations of soil moisture recharge in the Semiarid American southwest, Water Res. Res., 36(8), 22332247.
  • Seiler, K. P., and J. Gat (2007), Groundwater recharge from run-off, infiltration and percolation, Water Sci. Technol. Lib., vol. 55, Springer, Dordrecht, Netherlands.
  • Simmers, I. (Ed.) (1997), Recharge of Phreatic Aquifers in (semi-) Arid Areas, 277 pp., A. A. Balkema, Rotterdam, Netherlands.
  • Simunek, J., M. Sejna, and M. T. Van Genuchten (2005), The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Res. Rep. 240, Univ. of Calif., Riverside.
  • Simunek, J., M. Th. van Genuchten, and M. Sejna (2008), Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone J., 7, 587600.
  • Simunek, J., M. Th. van Genuchten, and M. Sejna (2012), HYDRUS: Model use, calibration and validation, Trans. ASABE, 55(4), 12611274.
  • Smerdon, B. D., C. A. Mendoza, and K. J. Devito (2008), Influence of subhumid climate and water table depth on groundwater recharge in shallow outwash aquifers, Water Resour. Res., 44(8), W08427, doi:10.1029/2007WR005950.
  • Toews, M. W., and D. M. Allen (2009), Evaluating different GCMs for predicting spatial recharge in an irrigated arid region, J. Hydrol., 374(3), 265281.
  • Valiantzas, J. D., and P. A. Londra (2008), Direct determination of the Brooks-Corey hydraulic functions by fitting an extended power function to the outflow method data, J. Hydrol., 362(1–2), 128133.
  • Van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44(5), 892898.
  • Varni, M. R., and E. J. Usunoff (1999), Simulation of regional-scale groundwater flow in the Azul River Basin, Buenos Aires Province, Argentina, Hydrogeol. J., 7(2), 180187.
  • Winter, T. C. (1999), Ground Water and Surface Water: A Single Resource, DIANE, Darby, Pa.