SEARCH

SEARCH BY CITATION

References

  • Bear, J., B. Rubinstein, and L. Fei (2011), Capillary pressure curve for liquid menisci in a cubic assembly of spherical particles below irreducible saturation, Transp. Porous Media, 89, 6373.
  • Berger, M. J., and P. Colella (1989), Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 6484.
  • Bikkina, P. K. (2011), Contact angle measurements of CO2-water-quartz/calcite systems in the perspective of carbon sequestration, Int. J. Greenhouse Gas Control, 5, 12591271.
  • Blunt, M. J. (2001), Flow in porous media—Pore-network models and multiphase flow, Curr. Opin. Colloid Interface Sci., 6, 197207.
  • Choi, J., and G. Son (2008), Numerical study of droplet motion in a microchannel with different contact angles, J. Mech. Sci. Technol., 22, 25902599.
  • Chopp, D., and J. A. Sethian (1993), Flow under curvature: Singularity formation, minimal surfaces, and geodesics, J. Exp. Math., 2(4), 235255.
  • Culligan, K. A., D. Wildenschild, B. S. B. Christensen, W. G. Gray, and M. L. Rivers (2006), Pore-scale characteristics of multiphase flow in porous media: A synchrotron-based CMT comparison of air-water and oil-water experiments, Adv. Water Resour., 29(2), 227238.
  • Espinoza, D. N., and J. C. Santamarina (2010), Water-CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage, Water Resour. Res., 46, W07537, doi:10.1029/2009WR008634.
  • Frette, O. I., and J. O. Helland (2010), A semi-analytical model for computation of capillary entry pressures and fluid configurations in uniformly-wet pore spaces from 2D rock images, Adv. Water Resour., 33(8), 846866.
  • Haines, W. (1927), Studies in the physical properties of soil. IV. A further contribution to the theory of capillary phenomena in soil, J. Agric. Soc., 17, 264290.
  • Helland, J. O., E. Jettestuen, D. G. Hatzignatiou, and D. Silin (2011), Three-dimensional level set modelling of capillary-controlled displacements in digital porous media, Abstract H54C-07 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec.
  • Hilpert, M., and C. T. Miller (2001), Pore-morphology-based simulation of drainage in totally wetting porous media, Adv. Water Resour., 24, 243255.
  • Huang, H., D. T. Thorne, M. G. Schaap, and M. C. Sukop (2007), Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E, 76, 066701.
  • Hui, M.-H., and M. J. Blunt (2000), Effects of wettability on three-phase flow in porous media, J. Phys. Chem. B, 104, 38333845.
  • Juanes, R., C. W. MacMinn, and M. L. Szulczewski (2010), The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: Storage efficiency for capillary trapping at the basin scale, Transp. Porous Media, 82, 1930.
  • Kim, Y., J. Wan, T. J. Kneafsey, and T. K. Tokunaga (2012), Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: Pore-scale studies in micromodels, Environ. Sci. Technol., 46, 42284235.
  • Lee, W., G. Son, and J. J. Jeong (2011), Numerical analysis of bubble growth and departure from a microcavity, Numer. Heat Transfer, B Fundamentals, 58, 323342.
  • Li, Z., M. C. Lai, G. He, and H. Zhou (2010), An augmented method for free boundary problems with moving contact lines, Comput. Fluids, 39, 10331040.
  • Liu, H., S. Krishnan, S. Marella, and H. S. Udaykumar (2005), Sharp interface Cartesian grid method. II. A technique for simulating droplet interactions with surfaces of arbitrary shape, J. Comput. Phys., 210, 3254.
  • Ma, S., G. Mason, and N. R. Morrow (1996), Effect of contact angle on drainage and imbibition in regular polygonal tubes, Colloids Surf. A, 117, 273291.
  • MacMinn, C. W., and R. Juanes (2009), Post-injection spreading and trapping of CO2 in saline aquifers: Impact of the plume shape at the end of injection, Comput. Geosci., 13, 483491.
  • Melrose, J. (1965), Wettability as related to capillary action in porous media, Soc. Pet. Eng. J., 5, 259271.
  • Mitchell, I. M., and J. A. Templeton (2005), A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems, Lect. Notes Comput. Sci., vol. 3413, Springer, New York.
  • Osher, S., and R. Fedkiw (2003), Level Set Methods and Dynamic Implicit Surfaces, Springer, New York.
  • Pan, C., M. Hilpert, and C. T. Miller (2004), Lattice-Boltzmann simulation of two-phase flow in porous media, Water Resour. Res., 40, W01501, doi:10.1029/2003WR002120.
  • Peng, D., B. Merriman, S. Osher, H. Zhao, and M. Kang (1999), A PDE-based fast local level set method, J. Comput. Phys., 155, 410438.
  • Piri, M., and M. J. Blunt (2005), Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description, Phys. Rev. E, 71(2), 026301.
  • Prodanović, M., and S. L. Bryant (2006), A level set method for determining critical curvatures for drainage and imbibition, J. Colloid Interface Sci., 304, 442458.
  • Prodanović, M., and S. L. Bryant (2008), Resolving meniscus movement within rough confining surfaces via the level set method, in Focus on Water Resource Research, edited by E. Heikkinen, pp. 237262, Nova Sci., Hauppage, N. Y.
  • Prodanović, M., and S. L. Bryant (2009), Physics-driven interface modeling for drainage and imbibition in fractures, SPE J., 14, 532542.
  • Prodanović, M., S. L. Bryant, and Z. T. Karpyn (2010), Investigating matrix/fracture transfer via a level set method for drainage and imbibition, SPE J., 15, 125136.
  • Prodanović, M., S. L. Bryant, and J. S. Davis (2013), Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones, Transp. Porous Media, 96(1), 39–62.
  • Ramstad, T., N. Idowu, C. Nardi, and P. E. Øren (2012), Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transp. Porous Media, 94, 487504.
  • Rodriguez, E., M. Prodanović, and S. L. Bryant (2012), Contact line extraction and length measurements in model sediments and sedimentary rocks, J. Colloid Interface Sci., 368, 558577.
  • Saadatpoor, E., S. L. Bryant, and K. Sepehrnoori (2008), Effect of heterogeneous capillary pressure on buoyancy-driven CO2 migration, paper SPE 113984 presented at the Improved Oil Recovery Symposium, Soc. Pet. Eng./Dep. of Energy, Tulsa, Okla.
  • Saadatpoor, E., S. L. Bryant, and K. Sepehrnoori (2010), New trapping mechanism in carbon sequestration, Transp. Porous Media, 82, 317.
  • Schaap, M. G., M. L. Porter, B. S. B. Christensen, and D. Wildenschild (2007), Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations, Water Resour. Res., 43, W12S06, doi:10.1029/2006WR005730.
  • Sethian, J. A. (1999), Level Set Methods and Fast Marching Methods, Cambridge Univ. Press, Cambridge, UK.
  • Shan, X., and H. Chen (1993), Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 18151819.
  • Silin, D., L. Tomutsa, S. M. Benson, and T. W. Patzek (2010), Microtomography and pore-scale modeling of two-phase fluid distribution, Transp. Porous Media, 86, 495515.
  • Spelt, P. D. M. (2005), A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J. Comput. Phys., 207, 389404.
  • Sun, Y., and C. Beckermann (2007), Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626653.
  • Sussman, M., P. Smereka, and S. Osher (1994), A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114(8), 146159.
  • van Dijke, M. I. J., K. S. Sorbie, M. Sohrabi, D. Tehrani, and A. Danesh (2002), Three-phase flow in WAG processes in mixed-wet porous media: Pore-scale network simulations and comparison with micromodel experiments, paper SPE 75192MS presented at Improved Oil Recovery Symposium, Soc. Pet. Eng./Dep. of Energy, Tulsa, Oklahoma.
  • Zhao, H.-K., B. Merriman, S. Osher, and L. Wang (1998), Capturing the behavior of bubbles and drops using the variational level set approach, J. Comput. Phys., 143, 495518.