• Acuna, J. A., I. Ershaghi, and Y. C. Yortsos (1992), Fractal analysis of pressure transients in the geysers geothermal field, paper presented at Seventeenth Workshop on Geothermal Reservoir Engineering, Stanford Univ., Stanford, Calif.
  • Acuna, J. A., I. Ershaghi, and Y. C. Yortsos (1995), Practical application of fractal pressure-transient analysis in naturally fractured reservoirs, SPE Form Eval., 10(3), 173179.
  • Barenblatt, G. E., I. P. Zeltov, and I. N. Kochina (1960), Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24, 12861303.
  • Bolshov, L., P. Kondratenko, K. Pruess, and V. Semenov (2007), Nonclassical transport processes in geologic media: Review of field and laboratory observations and basic physical concepts, Vadose Zone J., 7(4), 11351144.
  • Bouchaud, J. P., and A. Georges (1990), Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195, 127293.
  • Camacho-Velázquez, R., G. Fuentes-Cruz, and M. Vásquez-Cruz (2008), Decline curve analysis of fractured reservoirs with fractal geometry, SPE Reservoir Eval. Eng., 11(3), 606619.
  • Chang, J., and Y. C. Yortsos (1990), Pressure-transient analysis of fractal reservoirs, SPE Form. Eval., 5(1), 3138.
  • Cossio, M., G. J. Moridis, and T. A. Blasingame (2013), A semianalytic solution for flow in finite-conductivity vertical fractures by use of fractal theory, SPE J., 18(1), 8396.
  • Cushman, J. (1991), On diffusion in fractal porous media, Water Resour. Res., 27(4), 643644.
  • Dentz, M., and D. M. Tartakovsky (2006), Delay mechanisms of non-Fickian transport in heterogeneous media, Geophys. Res. Lett., 33, L16406, doi:10.1029/2006GL027054.
  • Havlin, S., and D. Ben-Abraham (2002), Diffusion in disordered media, Adv. Phys., 51(1), 187292.
  • Hernández-Coronado, H., M. Coronado, and E. Herrera-Hernández (2012), Transport in fractal media: An effective scale-invariant approach, Phys. Rev. E, 85, 066316.
  • Lebedev, N. N. (1972), Special Functions and Their Applications, Dover, New York.
  • Matheron, G., and G. de Marsily (1980), Is transport in porous media always diffusive? A counterexample, Water Resour. Res., 16(5), 901917.
  • Metzler, R., and T. F. Nonnenmacher (1998), Fractional diffusion, waiting-time distributions, and Cattaneo-type equations, Phys. Rev. E, 57(6), 64096414.
  • Neuman, S. P., and D. M. Tatakovsky (2009), Perspectives on theories of non-Fickian transport in heterogeneous media, Adv. Water Resour., 32, 670680.
  • O' Shaughnessy, B., and I. Procaccia (1985), Diffusion on fractals, Phys. Rev. A, 32, 30733083.
  • Sahimi, M. (1987), Hydrodynamic dispersion near the percolation threshold: Scaling and probability densities, J. Phys. A, 20, 12931298.
  • Sahimi, M. (1995), Flow and Transport in Porous Media and Fractured Rock, 2nd ed., Wiley-VCH, Weinheim.
  • Stehfest, H. (1970), Numerical inversion of Laplace transforms, Commun. ACM, 13(1), 4749.
  • Warren, J. E., and P. J. Root (1963), The behaviour of naturally fractured reservoirs, SPE J., 3(3), 245255.
  • Weiss, G. H. (2002), Some applications of persistent random walks and the telegrapher's equation, Physica A, 311, 381410.