SEARCH

SEARCH BY CITATION

References

  • Adair, C., and J. T. Wilson (2012), Site characterization of ethanol-blended fuel releases, in National Tanks Conference, St Louis, Mo., 20 Mar. [Available at http://www.neiwpcc.org/tanksconference/presentations/Tuesday%20Presentations/Wilson_Adair_Site%20Characterization_Tuesday.pdf.]
  • Amos, R. T., K. U. Mayer, B. A. Bekins, G. N. Delin, and R. L. Williams (2005), Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface, Water Resour. Res., 41, W02001, doi:10.1029/2004WR003433.
  • Amos, R. T., B. A. Bekins, I. M. Cozzarelli, M. A. Voytek, J. D. Kirshtein, E. J. P. Jones, and D. W. Blowes (2012), Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer, Geobiology, 10(6), 506517, doi:10.1111/j.1472–4669.2012.00341.x.
  • Anderson, R. T., and D. R. Lovley (2000), Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer, Environ. Sci. Technol., 34(11), 22612266.
  • Beal, E. J., C. H. House, and V. J. Orphan (2009), Manganese- and iron-dependent marine methane oxidation, Science, 325(5937), 184187.
  • Bekins, B. A., E. M. Godsy, and D. F. Goerlitz (1993), Modeling steady-state methanogenic degradation of phenols in groundwater, J. Contam. Hydrol., 14(3–4), 279294.
  • Bekins, B. A., E. M. Godsy, and E. Warren (1999), Distribution of microbial physiologic types in an aquifer contaminated by crude oil, Microb. Ecol., 37(4), 263275.
  • Caldwell, S. L., J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, and F. S. Colwell (2008), Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms, Environ. Sci. Technol., 42(18), 67916799.
  • Cápiro, N. L., M. L. B. Da Silva, B. P. Stafford, W. G. Rixey, and P. J. J. Alvarez (2008), Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank, Environ. Microbiol., 10(9), 22362244.
  • Chen, Y. D., J. F. Barker, and L. Gui (2008), A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study, J. Contam. Hydrol., 96(1–4), 1731.
  • Clement, T., Y. Sun, B. Hooker, and J. Petersen (1998), Modeling multispecies reactive transport in ground water, Ground Water Monit. Remediation, 18(2), 7992.
  • Corseuil, H. X., C. S. Hunt, R. C. F. Dos Santos, and P. J. J. Alvarez (1998), The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradation, Water Res., 32(7), 20652072.
  • Corseuil, H. X., A. L. Monier, M. Fernandes, M. R. Schneider, C. C. Nunes, M. do Rosario, and P. J. J. Alvarez (2011), BTEX plume dynamics following an ethanol blend release: Geochemical footprint and thermodynamic constraints on natural attenuation, Environ. Sci. Technol., 45(8), 34223429.
  • Crowe, S. A., et al. (2011), The methane cycle in ferruginous Lake Matano, Geobiology, 9(1), 6178.
  • Davis, G. B., C. Barber, T. R. Power, J. Thierrin, B. M. Patterson, J. L. Rayner, and Q. Wu (1999), The variability and intrinsic remediation of a BTEX plume in anaerobic sulphate-rich groundwater, J. Contam. Hydrol., 36(3–4), 265290.
  • Deeb, R. A., J. O. Sharp, A. Stocking, S. McDonald, K. A. West, M. Laugier, P. J. J. Alvarez, M. C. Kavanaugh, and L. Alvarez-Cohen (2002), Impact of ethanol on benzene plume lengths: Microbial and modeling studies, J. Environ. Eng.—ASCE, 128(9), 868875.
  • Dolfing, J. (2001), The microbial logic behind the prevalence of incomplete oxidation of organic compounds by acetogenic bacteria in methanogenic environments, Microb. Ecol., 41(2), 8389.
  • Eckert, P., and C. A. J. Appelo (2002), Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate, Water Resour. Res., 38(8), 1130, doi:10.1029/2001WR000692.
  • Essaid, H. I., B. A. Bekins, E. M. Godsy, E. Warren, M. J. Baedecker, and I. M. Cozzarelli (1995), Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site, Water Resour. Res., 31(12), 33093327.
  • Feris, K., D. Mackay, N. de Sieyes, I. Chakraborty, M. Einarson, K. Hristova, and K. Scow (2008), Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene, and o-xylene in a sulfate-reducing aquifer, Environ. Sci. Technol., 42(7), 22892294.
  • Freitas, J. G., B. Fletcher, R. Aravena, and J. F. Barker (2010), Methane production and isotopic fingerprinting in ethanol fuel contaminated sites, Ground Water, 48(6), 844857.
  • Freitas, J. G., M. T. Mocanu, J. L. G. Zoby, J. W. Molson, and J. F. Barker (2011), Migration and fate of ethanol-enhanced gasoline in groundwater: A modelling analysis of a field experiment, J. Contam. Hydrol., 119(1–4), 2543.
  • Gomez, D. E., P. C. de Blanc, W. G. Rixey, P. B. Bedient, and P. J. J. Alvarez (2008), Modeling benzene plume elongation mechanisms exerted by ethanol using RT3D with a general substrate interaction module, Water Resour. Res., 44, W05405, doi:10.1029/2007WR006184.
  • Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000), MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process, U.S. Geol. Surv. Open File Rep., 00–92, 121.
  • Harvey, R. W., and L. B. Barber (1992), Associations of free-living bacteria and dissolved organic-compounds in a plume of contaminated groundwater, J. Contam. Hydrol., 9(1–2), 91103.
  • Interstate Technology & Regulatory Council (2011), Biofuels: Release Prevention, Environmental Behavior, and Remediation, Biofuel Team, Washington, D. C. [Available at http://www.itrcweb.org/documents/biofuels/biofuels-1.pdf.]
  • Klappenbach, J. A., P. R. Saxman, J. R. Cole, and T. M. Schmidt (2001), rrndb: The ribosomal RNA operon copy number database, Nucleic Acids Res., 29(1), 181184.
  • Knab, N. J., A. W. Dale, K. Lettmann, H. Fossing, and B. B. Jørgensen (2008), Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments, Geochim. Cosmochim. Acta, 72(15), 37463757.
  • Lee, E. J., M. Kim, Y. Kim, and K.-K. Lee (2009), Numerical and field investigation of enhanced in situ denitrification in a shallow-zone well-to-well recirculation system, Ecol. Modell., 220(19), 24412449.
  • Leloup, J., A. Loy, N. J. Knab, C. Borowski, M. Wagner, and B. B. Jørgensen (2007), Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea, Environ. Microbiol., 9(1), 131142.
  • Lovanh, N., C. S. Hunt, and P. J. J. Alvarez (2002), Effect of ethanol on BTEX biodegradation kinetics: Aerobic continuous culture experiments, Water Res., 36(15), 37393746.
  • Ma, J., W. G. Rixey, G. E. DeVaull, B. P. Stafford, and P. J. J. Alvarez (2012), Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol, Environ. Sci. Technol., 46(11), 60136019.
  • Mackay, D. M., et al. (2006), Impact of ethanol on the natural attenuation of benzene, toluene, and o-xylene in a normally sulfate-reducing aquifer, Environ. Sci. Technol., 40(19), 61236130.
  • Mackay, D. M., M. D. Einarson, P. M. Kaiser, M. Nozawa-Inoue, S. Goyal, I. Chakraborty, E. Rasa, and K. M. Scow (2012), Mass discharge in a tracer plume: Evaluation of the Theissen polygon method, Ground Water, 50(6), 895907.
  • Martens, C. S., and R. A. Berner (1977), Interstitial water chemistry of anoxic Long Island sound sediments: 1. Dissolved gases, Limnol. Oceanogr., 22(1), 1025.
  • Molson, J. W., J. F. Barker, E. O. Frind, and M. Schirmer (2002), Modeling the impact of ethanol on the persistence of benzene in gasoline-contaminated groundwater, Water Resour. Res., 38(1), 1003, doi:10.1029/2001WR000589.
  • Molz, F. J., M. A. Widdowson, and L. D. Benefield (1986), Simulation of microbial-growth dynamics coupled to nutrient and oxygen-transport in porous-media, Water Resour. Res., 22(8), 12071216, doi:10.1029/WR022i008p01207.
  • Monod, J. (1949), The growth of bacterial cultures, Annu. Rev. Microbiol., 3, 371394.
  • Nelson, D. K., T. M. LaPara, and P. J. Novak (2010), Effects of ethanol-based fuel contamination: Microbial community changes, production of regulated compounds, and methane generation, Environ. Sci. Technol., 44(12), 45254530.
  • National Research Council (NRC) (2000), Natural Attenuation for Groundwater Remediation, National Research Council (U.S.), Committee on Intrinsic Remediation, xiv, 274 pp., Natl. Acad. Press, Washington, D. C.
  • Poeter, E. P., M. C. Hill, E. R. Banta, S. Mehl, and S. Christensen (2005), UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, U.S. Geol. Surv. Tech. Methods, 6-A11, 283.
  • Postma, D., and R. Jakobsen (1996), Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface, Geochim. Cosmochim. Acta, 60(17), 31693175.
  • Powers, S. E., C. S. Hunt, S. E. Heermann, H. X. Corseuil, D. Rice, and P. J. J. Alvarez (2001), The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol, Crit. Rev. Environ. Sci. Technol., 31(1), 79123.
  • Rasa, E. (2012), Impacts of back diffusion and biodegradation on MTBE/TBA plumes and impacts of spills of ethanol-blended biofuels on groundwater: Development of models for evaluating field experiments and their implications, PhD dissertation, Dep. of Civ. and Environ. Eng., Univ. of Calif., Davis, Calif.
  • Rasa, E., S. W. Chapman, B. A. Bekins, G. E. Fogg, K. M. Scow, and D. M. Mackay (2011), Role of back diffusion and biodegradation reactions in sustaining an MTBE/TBA plume in alluvial media, J. Contam. Hydrol., 126(3–4), 235247.
  • Rasa, E., L. Foglia, D. M. Mackay, and K. M. Scow (2013), Effect of different transport observations on inverse modeling results: Case study of a long term groundwater tracer test monitored at high resolution, Hydrogeol. J., doi:10.1007/s10040-013-1026-8.
  • Regnier, P., A. W. Dale, S. Arndt, D. E. LaRowe, J. Mogollon, and P. Van Cappellen (2011), Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, Earth Sci. Rev., 106(1–2), 105130.
  • Rittmann, B. E., and P. L. McCarty (2001), Environmental Biotechnology: Principles and Applications, xiv, 754 pp., McGraw-Hill, Boston, Mass.
  • Roychoudhury, A., and D. McCormick (2006), Kinetics of sulfate reduction in a coastal aquifer contaminated with petroleum hydrocarbons, Biogeochemistry, 81(1), 1731.
  • Roychoudhury, A. N., P. Van Cappellen, J. E. Kostka, and E. Viollier (2003), Kinetics of microbially mediated reactions: Dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA), Estuarine Coastal Shelf Sci., 56(5–6), 10011010.
  • Scheidegger, A. (1961), General theory of dispersion in porous media, J. Geophys. Res., 66(10), 32733278, doi:10.1029/JZ066i010p03273.
  • Spalding, R. F., M. A. Toso, M. E. Exner, G. Hattan, T. M. Higgins, A. C. Sekely, and S. D. Jensen (2011), Long-term groundwater monitoring results at large, sudden denatured ethanol releases, Ground Water Monit. Remediation, 31(3), 6981.
  • Suflita, J. M., and M. R. Mormile (1993), Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface, Environ. Sci. Technol., 27(5), 976978.
  • United States Environmental Protection Agency (2011), EPA On-Line Tools for Site Assessment Calculation, Jan. [Available at http://www.epa.gov/athens/learn2model/part-two/onsite/estdiffusion.html.]
  • Wilson, J. T., M. A. Toso, D. M. Mackay, N. de Sieyes, and G. E. DeVaull (2012), What's the deal with methane at LUST spill sites?, L.U.S.T.Line: A report on federal & state programs to control leaking underground storage tanks, Bull. 71, pp. 68, The New England Interstate Water Pollut. Control Comm., Lowell, Mass., Sep.
  • Wood, I. (2004), Assessment of potential impacts of the fuel oxygenate ethanol on the natural attenuation of BTEX and MTBE at Vandenberg Air Force Base, California, Master's thesis, Univ. of Calif., Davis, Calif.