SEARCH

SEARCH BY CITATION

References

  • Barnett, V., and T. Lewis (1994), Outliers in Statistical Data, John Wiley, New York.
  • Bayarri, M. J., and J. Morales (2003), Bayesian measures of surprise for outlier detection, J. Stat. Plann. Inference, 111(1–2), 322.
  • Cohn, T. (2005), Estimating contaminant loads in rivers: An application of adjusted maximum likelihood to type 1 censored data, Water Resour. Res., 41, W07003, doi:10.1029/2004WR003833.
  • Cohn, T. A. (1988), Adjusted maximum likelihood estimation of the moments of lognormal populations from type 1 censored samples, U.S. Geol. Surv. Open File Rep., 88350, 34 pp.
  • Cohn, T. A., W. L. Lane, and W. G. Baier (1997), An algorithm for computing moments-based flood quantile estimates when historical flood information is available, Water Resour. Res., 33(9), 20892096.
  • David, H. A. (1981), Order Statistics, 2nd ed., 360 pp., John Wiley, New York.
  • Dixon, W. J. (1950), Analysis of extreme values, Ann. Math. Stat., 21(1), 488506.
  • Dixon, W. J. (1951), Ratios involving extreme values, Ann. Math. Stat., 22(1), 6878.
  • England, J. F., and T. A. Cohn (2008), Bulletin 17b flood frequency revisions: Practical software and test comparison results, in World Environmental & Water Resources Conference, Honolulu, HI, edited by K. C. Kabbes, American Society of Civil Engineers, Reston, Va., 11 pp.
  • Gentleman, J., and M. Wilk (1975), Detecting outliers. II. Supplementing the direct analysis of residuals, Biometrics, 31(2), 387410.
  • Griffis, V. W. (2008), EMA with historical information, low outliers, and regional skew, in World Environmental & Water Resources Conference, Honolulu, HI, edited by K. C. Kabbes, 10 pp., American Society of Civil Engineers, Reston, Va.
  • Griffis, V. W., J. R. Stedinger, and T. A. Cohn (2004), LP3 quantile estimators with regional skew information and low outlier adjustments, Water Resour. Res., 40, W07503, doi:10.1029/2003WR002697.
  • Grubbs, F. E. (1969), Procedures for detecting outlying observations in samples, Technometrics, 11(1), 121.
  • Grubbs, F. E., and G. Beck (1972), Extension of sample sizes and percentage points for significance tests of outlying observations, Technometrics, 14(4), 847854.
  • Hadi, A., and J. Simonoff (1993), Procedures for the identification of multiple outliers in linear models, J. Am. Stat. Assoc., 88(424), 12641272.
  • Hosking, J. R. M., and J. R. Wallis (1997), Regional Frequency Analysis—An Approach Based on L-Moments, 224 pp., Cambridge Univ. Press, New York.
  • Interagency Committee on Water Data (IACWD) (1982), Guidelines for determining flood flow frequency, Bulletin 17-B, technical report, 28 pp., Hydrol. Subcomm, Reston, Va.
  • Johnson, N., and S. Kotz (1970), Continuous Univariate Distributions—1, 1st ed., 300 pp., John Wiley, New York.
  • Johnson, N., S. Kotz, and N. Balakrishnan (1994), Continuous Univariate Distributions, vol. 1, John Wiley, New York.
  • Klemes, V. K. (1986), Dilettantism in hydrology: Transition or destiny?, Water Resour. Res., 22(9S), 177S188S.
  • Kroll, C., and J. R. Stedinger (1996), Estimation of moments and quantiles with censored data, Water Resour. Res., 32(4), 10051012.
  • Lamontagne, J. R., J. R. Stedinger, T. A. Cohn, and N. Barth (2013), Robust national flood frequency guidelines: What is an Outlier?, in World Environmental & Water Resources Conference, Cincinnati, OH, edited by C. L. Patterson, S. D. Struck, and D. J. Murray, pp. 2454–2466, American Society of Civil Engineers, Reston, Va.
  • Marasinghe, M. (1985), A multistage procedure for detecting several outliers in linear regression, Technometrics, 27(4), 395399.
  • Ondo, J.-C., T. B. M. J. Ouarda, V. Fortin, and B. Bobée (2001), Procédures bayésiennes pour la détection d'observations singulières: Synthèse bibliographique, J. Soc. Française Stat., 142(2), 4164.
  • Prescott, P. (1975), An approximate test for outliers in linear models, Technometrics, 17(1), 129132.
  • Prescott, P. (1978), Examination of the behaviour of tests for outliers when more than one outlier is present, Appl. Stat., 27, 1025.
  • Rosner, B. (1975), On the detection of many outliers, Technometrics, 17(2), 221227.
  • Rosner, B. (1983), Percentage points for a generalized ESD many outlier procedure, Technometrics, 25(2), 165172.
  • Rousseeuw, P., and A. Leroy (2003), Robust Regression and Outlier Detection, John Wiley, Hoboken, N. J.
  • Rousseeuw, P., and B. van Zomeren (1990), Unmasking multivariate outliers and leverage points, J. Am. Stat. Assoc., 85(411), 633639.
  • Siyi, H. (1987), Problems with outlier test methods in flood frequency analysis, J. Hydrol., 96(1–4), 375383.
  • Spencer, C., and R. McCuen (1996), Detection of outliers in Pearson type III data, J. Hydrol. Eng., 1, 210.
  • Stedinger, J. R., and V. W. Griffis (2008), Flood frequency analysis in the United States: Time to update, J. Hydrol. Eng., 13(4), 199204.
  • Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou (1993), Frequency Analysis of Extreme Events, chap. 18, p. 99, McGraw Hill, New York.
  • Stuart, A., and J. K. Ord (1987), The Advanced Theory of Statistics, Distribution Theory, vol. 1, 5th ed., 604 pp., Oxford Univ. Press, New York.
  • Thomas, W. O. (1985), A uniform technique for flood frequency analysis, J. Water Resour. Plann. Manage., 111(3), 321337.
  • Thompson, W. (1935), On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation, Ann. Math. Stat., 6, 214219.
  • Tietjen, G., and R. Moore (1972), Some Grubbs-type statistics for the detection of several outliers, Technometrics, 14(3), 583597.
  • Verma, S., and A. Quiroz-Ruiz (2006), Critical values for six Dixon tests for outliers in normal samples up to sizes 100, and applications in science and engineering, Rev. Mex. Cienc. Geol., 23(2), 133161.