SEARCH

SEARCH BY CITATION

References

  • Alderdice, D. F., and F. P. J. Velsen (1978), Relation between temperature and incubation time for eggs of Chinook Salmon (Oncorhynchus tshawytscha), J. Fish. Res. Board Can., 35, 6975.
  • Arriaga, M. A., and D. I. Leap (2006), Using solver to determine vertical groundwater velocities by temperature variations, Purdue University, Indiana, USA, Hydrogeol. J., 14, 253263.
  • Baxter, C. V., F. R. Hauer, and W. W. Woessner (2003), Measuring groundwater–stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity, Trans. Am. Fish. Soc., 132, 493502.
  • Beacham, T. D., and C. B. Murray (1990), Temperature, egg size, and development of embryos and alevins of five species of Pacific salmon: A comparative analysis, Trans. Am. Fish. Soc., 119, 927945.
  • Bencala, K. E., M. N. Gooseff, and B. A. Kimball (2011), Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections, Water Resour. Res., 47, W00H03.
  • Bjornn, T. C., and D. W. Reiser (1991), Habitat requirements of salmonids in streams, in Influence of Forest and Rangeland Management on Salmonid Fishes and Their Habitats, vol. 19, edited by W. R. Meehan, pp. 83138, Am. Fish. Soc. Spec. Publ., Bethesda, Md.
  • Boano, F., C. Camporeale, and R. Revelli (2010), A linear model for the coupled surface-subsurface flow in a meandering stream, Water Resour. Res., 46, W07535.
  • Bredehoeft, J. D., and I. S. Papadopulos (1965), Rates of vertical groundwater movement estimated from the earth's thermal profile, Water Resour. Res., 1, 325328.
  • Briggs, M. A., L. Lautz, J. M. McKenzie, R. P. Gordon, and D. Hare (2012), Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux, Water Resour. Res., 48, W02527.
  • Bruno, M. C., B. Maiolini, M. Carolli, and L. Silveri (2009), Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy), Int. J. Limnol., 45, 157170.
  • Caamaño, D., P. Goodwin, and J. M. Buffington (2012), Flow structure through pool-riffle sequences and a conceptual model for their sustainability in gravel-bed rivers, River Res. Appl., 28, 377389.
  • Cardenas, M. B., and J. L. Wilson (2007), Effects of current-bed form induced fluid flow on thermal regime of sediments, Water Resour. Res., 43, W08431.
  • Claxton, A. J., P. D. Bates, and H. L. Cloke (2003), Mixing of hillslope, river, and alluvial ground waters in lowland floodplains, Ground Water, 41, 926936.
  • Constantz, J., A. E. Stewart, R. Niswonger, and L. Sarma (2002), Analysis of temperature profiles for investigating stream losses beneath ephemeral channels, Water Resour. Res., 38, 1316.
  • Cooper, A. C. (1965), The Effect of Transported Stream Sediments on the Survival of Sockeye and Pink Salmon Eggs and Alevin, International Pacific Salmon Fisheries Commission, New Westminster, BC, Canada.
  • Cuthbert, M. O., and R. Mackay (2013), Impacts of nonuniform flow on estimates of vertical streambed flux, Water Resour. Res., 49, 1928.
  • DeVries, P. (1997), Riverine salmonid egg burial depths: A review of published data and implications for scour studies, Can. J. Fish. Aquat. Sci., 54, 16851698.
  • Fanelli, R. M., and L. Lautz (2008), Water, heat and solute fluxes through the hyporheic zone of small dams, Ground Water, 46, 671687.
  • Ferguson, G., and V. Bense (2011), Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream, Ground Water, 49, 336347.
  • Geist, D. R., and D. D. Dauble (1998), Redd site selection and spawning habitat use by fall Chinook salmon: The importance of geomorphic features in large rivers, Environ. Manage., 22, 655669.
  • Geist, D. R., T. P. Hanrahan, E. V. Arntzen, G. A. McMicheal, C. J. Murray, and Y.-J. Chien (2002), Physicochemical characteristics of the hyporheic zone affect redd site selection by chum salmon and fall Chinook salmon in the Columbia River, N. Am. J. Fish. Manag., 22, 10771085.
  • Gordon, R. P., L. Lautz, M. A. Briggs, and J. M. McKenzie (2012), Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program, J. Hydrol., 420–421, 142158.
  • Goto, S., M. Yamano, and M. Kinoshita (2005), Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface, J. Geophys. Res., 110, B01106.
  • Hannah, D. M., I. A. Malcolm, and C. Bradley (2009), Seasonal hyporheic temperature dynamics over riffle bedforms, Hydrol. Processes, 23, 21782194.
  • Harvey, J. W., and K. E. Bencala (1993), The effect of streambed topography on surface-subsurface water exchange in mountain catchments, Water Resour. Res., 29, 8998.
  • Hatch, C., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl (2006), Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42, W10410.
  • Hatch, C., A. T. Fisher, C. Ruehl, and G. Stemler (2010), Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods, J. Hydrol., 389, 276288.
  • Isaak, D. J., R. F. Thurow, B. E. Rieman, and J. B. Dunham (2007), Chinook salmon use of spawning patches: Relative roles of habitat quality, size and connectivity, Ecol. Appl., 17, 352364.
  • Keery, J., A. Binley, N. Crook, and J. W. N. Smith (2007), Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series, J. Hydrol., 336, 116.
  • Kennedy, C. D., D. P. Genereux, D. R. Corbett, and H. Mitasova (2009a), Relationships among groundwater age, denitrification, and the coupled groundwater and nitrogen fluxes through a streambed, Water Resour. Res., 45, W09402.
  • Kennedy, C. D., D. P. Genereux, D. R. Corbett, and H. Mitasova (2009b), Spatial and temporal dynamics of coupled groundwater and nitrogen fluxes through a streambed in an agricultural watershed, Water Resour. Res., 45, W09401.
  • Krause, S., D. M. Hannah, and T. Blume (2011), Interstitial pore-water temperature dynamics across a pool-riffle-pool sequence, Ecohydrology, 4, 549563.
  • Lapham, W. W. (1989), Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity, Water Supply Paper 2337, U.S. Geol. Surv., Denver, Colo.
  • Lautz, L. (2012), Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records, J. Hydrol., 464–565, 199215.
  • Lautz, L. K. (2010), Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series, Water Resour. Res., 46, W01509.
  • Luce, C. H., and D. G. Tarboton (2010), Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations, Hydrol. Earth Syst. Sci., 14, 535543.
  • Luce, C. H., D. Tonina, F. Gariglio, and R. Applebee (2013), Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series, Water Resour. Res., 49, 488506, doi:10.1029/2012WR012380.
  • Malard, F., K. Tockner, M.-J. Dole-Olivier, and J. V. Ward (2002), A landscape perspective of surface–subsurface hydrological exchanges in river corridors, Freshwater Biol., 47, 621640.
  • Malcolm, I. A., A. F. Youngson, and C. Soulsby (2003), Survival of salmonid eggs in a degraded gravel-bed stream: Effects of groundwater-surface water interactions, River Res. App., 19, 303316.
  • Marzadri, A., D. Tonina, and A. Bellin (2011), A semianalytical three-dimensional process-based model for hyporheic nitrogen dynamics in gravel bed rivers, Water Resour. Res., 47, W11518.
  • Marzadri, A., D. Tonina, and A. Bellin (2012), Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology, J. Geophys. Res., 117, G00N10, doi:10.1029/2012JG001966.
  • Marzadri, A., D. Tonina, and A. Bellin (2013), Effects of stream morphodynamics on hyporheic zone thermal regime, Water Resour. Res., 49, 22872302.
  • Marzadri, A., D. Tonina, A. Bellin, G. Vignoli, and M. Tubino (2010), Effects of bar topography on hyporheic flow in gravel-bed rivers, Water Resour. Res., 46, W07531.
  • McGlynn, B. L. (2005), The role of riparian zones in steep mountain watersheds, in Global Change and Mountain Regions: An Overview of Current Knowledge, edited by U. M. Huber et al., Springer, Dordrecht, Netherlands.
  • McKean, J. A., and D. Tonina (2013), Bed stability in unconfined gravel-bed mountain streams: With implications for salmon spawning viability in future climates, J. Geophys. Res. Earth Surf., 118, 1227–1240, doi:10.1002/jgrf.20092.
  • Montgomery, D. R., and J. M. Buffington (1997), Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bull., 109, 596611.
  • Naiman, R. J. (1998), Biotic stream classification, in River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, edited by R. J. Naiman and R. E. Bilby, pp. 97119, Springer-Verlag, New York.
  • Pinay, G., T. C. O'Keefe, R. T. Edwards, and R. J. Naiman (2009), Nitrate removal in the hyporheic zone of a salmon river in Alaska, River Res. Appl., 25, 367375.
  • Pretty, J. L., A. G. Hildrew, and M. Trimmer (2006), Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater fed chalk stream, J. Hydrol., 330, 84100.
  • Revsbech, N. P., J. P. Jacobsen, and L. P. Nielsen (2005), Nitrogen transformations in microenvironments of river beds and riparian zones, Ecol. Eng., 24, 447455.
  • Savant, A. S., D. D. Reible, and L. J. Thibodeaux (1987), Convective transport within stable river sediments, Water Resour. Res., 23, 17631768.
  • Schornberg, C., C. Schmidt, E. Kalbus, and J. H. Fleckenstein (2010), Simulating the effects of geologic heterogeneity and transient boundary conditions on streambed temperatures: Implications for temperature-based water flux calculations, Adv. Water Resour., 33, 13091319.
  • Shanafield, M., C. Hatch, and G. Pohll (2011), Uncertainty in thermal time series analysis estimates of streambed water flux, Water Resour. Res., 47, W03504.
  • Shiono, K., T. Ishigaki, Y. Muto, and H. Imamoto (1999), Bed shear stress in meandering channels for overbank flow, paper presented at IAHR Biennial Congress, Graz, Austria.
  • Stallman, R. W. (1965), Steady 1-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature, J. Geophys. Res., 70, 28212827.
  • Stanford, J. A., and J. V. Ward (1988), The hyporheic habitat of river ecosystems, Nature, 335, 6465.
  • Stanford, J. A., and J. V. Ward (1993), An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor, Journal of the North American Benthological Society, 12, 4860.
  • Storey, R. G., K. W. F. Howard, and D. D. Williams (2003), Factor controlling riffle-scale hyporheic exchange flows and their seasonal changes in gaining stream: A three-dimensional groundwater model, Water Resour. Res., 39, 17, doi:10.1029/2002WR001367.
  • Storey, R. G., D. D. Williams, and R. R. Fulthorpe (2004), Nitrogen processing in the hyporheic zone of a pastoral stream, Biogeochemistry, 69, 285313.
  • Strahler, A. N. (1952), Hypsometric (area-altitude) analysis of erosional topography, Geol. Soc. Am. Bull., 63, 11171142.
  • Stuart, T. A. (1953), Water currents through permeable gravel and their significance to spawning salmonids, etc., Nature, 172, 407408.
  • Swanson, T. E., and B. M. Cardenas (2010), Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat, Limnol. Oceanogr., 55, 17411754.
  • Taylor, C. J., D. J. Pedregal, P. C. Young, and W. Tych (2007), Environmental time series analysis and forecasting with the Captain toolbox, Environ. Model. Softw., 22, 797814.
  • Tonina, D., and J. M. Buffington (2007), Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling, Water Resour. Res., 43.
  • Tonina, D., and J. M. Buffington (2009a), Hyporheic exchange in mountain rivers I: Mechanics and environmental effects, Geography Compass, 3, 10631086.
  • Tonina, D., and J. M. Buffington (2009b), A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat, Can. J. Fish. Aquat. Sci., 66, 21572173.
  • Tonina, D., and J. M. Buffington (2011), Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels, Water Resour. Res., 47, W08508.
  • Tonina, D., and J. A. McKean (2010), Climate change impact on salmonid spawning in low-land streams in Central Idaho, USA, paper presented at 9th International Conference on Hydroinformatics, Chemical Industry Press, Tianjin, China.
  • Tonina, D., J. A. McKean, C. Tang, and P. Goodwin (2011), New tools for aquatic habitat modeling, paper presented at 34th IAHR World Congress, Balance and Uncertainty, 33rd Hydrology and Water Resources Symposium, 10th Hydraulics Conference, IAHR, Brisbane, Australia.
  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger, and K. E. Bencala (1989), Retention and transport of nutrients in a third-order stream in Northwestern California: Hyporheic processes, Ecology, 70, 18931905.
  • Van Grinsven, M., A. Mayer, and C. Huckins (2012), Estimation of streambed groundwater fluxes associated with coaster brook trout spawning habitat, Ground Water, 50, 432441.
  • Vannote, R. L., W. G. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing (1980), The river continuum concept, Can. J. Fish. Aquat. Sci., 37, 130137.
  • Vogt, T., P. Schneider, L. Hahn-Woernle, and O. A. Cirpka (2010), Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling, J. Hydrol., 380, 154164.
  • Whiting, P. J., and M. Pomeranets (1997), A numerical study of bank storage and its contribution to streamflow, J. Hydrol., 202, 121136.
  • Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley (1998), Ground water and surface water a single resource, Circ. 1139, U.S. Geol. Surv., Denver, Colo.
  • Wroblicky, G. J., M. E. Campana, M. H. Valett, and C. N. Dahm (1998), Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems, Water Resour. Res., 34, 317328.
  • Zarnetske, J. P., R. Haggerty, S. M. Wondzell, and M. A. Baker (2011), Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone, J. Geophys. Res., 116, G01025.