SEARCH

SEARCH BY CITATION

References

  • Bates, B. C., R. E. Chandler, S. P. Charles, and E. P. Campbell (2010), Assessment of apparent nonstationarity in time series of annual inflow, daily precipitation, and atmospheric circulation indices: A case study from southwest Western Australia, Water Resour. Res., 46, W00H02, doi:10.1029/2010WR009509.
  • Botzen, W. J. W., J. C. J. H. Aerts, and J. C. J. M. van denBergh (2009), Dependence of flood risk perceptions on socioeconomic and objective risk factors, Water Resour. Res., 45, W10440, doi:10.1029/2009WR007743.
  • Coles, S. G. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer, London.
  • Cooley, D. (2013), Return periods and return levels under climate change, in Extremes in a Changing Climate: Detection, Analysis, and Uncertainty, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, pp. 97114, Springer, New York.
  • Fernandez, B., and J. D. Salas (1999), Return period and risk of hydrologic events. I: mathematical formulation, J. Hydrol. Eng., 4, 297307.
  • Gilleland, E., and R. W. Katz (2011), A new software to analyze how extremes change over time, Eos, 92, 1314.
  • Hanel, M., T. A. Buishand, and C. A. T. Ferro (2009), A non-stationary index flood model for precipitation extremes in transient regional climate model simulations, J. Geophys. Res., 114, D15107, doi:10.1029/2009JD011712.
  • Institute for Water Resources (2011), Flood Risk Management Approaches: As Being Practiced in Japan, Netherlands, United Kingdom, and United States, IWR Report No. 2011-R-08, U.S. Army Corps of Engineers.
  • Jakob, D. (2013), Nonstationarity in extremes and engineering design, in Extremes in a Changing Climate: Detection, Analysis, and Uncertainty, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, pp. 363417, Springer, New York.
  • Katz, R. W. (2013), Statistical methods for nonstationary extremes: Detection, analysis and uncertainty, in Extremes in a Changing Climate: Detection, Analysis, and Uncertainty, edited by A. AghaKouchak, D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, pp. 1537, Springer, New York.
  • Katz, R. W., M. B. Parlange, and P. Naveau (2002), Statistics of extremes in hydrology, Adv. Water Resour., 25, 12871304.
  • Khaliq, M. N., T. B. M. J. Ouarda, J.-C. Ondo, P. Gachon, and B. Bobée (2006), Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review, J. Hydrol., 329, 534552.
  • Kunreuther, H.C., M. V. Pauly, and S. McMorrow (2013), Insurance and Behavioral Economics: Improving Decisions in the Most Misunderstood Industry, Cambridge University Press, Cambridge.
  • Laurent, C., and S. Parey (2007), Estimation of 100-year-return-period temperatures in France in a non-stationary climate: Results from observations and IPCC scenarios, Global Planet. Change, 57, 177188.
  • Li, Y., W. Cai, and E. P. Campbell, (2005), Statistical modeling of extreme rainfall in southwest Western Australia, J. Clim., 18, 852863.
  • Lloyd, E. (1980), Handbook of applicable mathematics, Wiley, New York.
  • Michel-Kerjan, E., and H. Kunreuther (2011), Redesigning flood insurance, Science, 333, 408409.
  • Milly, P. C. D., J. Betancourt, R. M. Hirsch, Z. W. Kundzewicz, D. P. Kundzewicz, and R. J. Stouffer (2008), Stationarity is dead: Whither water management? Science, 319, 573574.
  • Olsen, J. R. (2006), Climate change and floodplain management in the United States, Clim. Change, 76, 407426.
  • Olsen, J. R., J. L. Lambert, and Y. Y. Haimes (1998), Risk of extreme events under nonstationary conditions, Risk Anal., 18, 497510.
  • Parey, S., F. Malek, C. Laurent, and D. Dacunha-Castelle (2007), Trends and climate evolutions: Statistical approach for very high temperatures in France, Clim. Change, 81, 331352.
  • Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle (2010), Different ways to compute temperature return levels in the climate change context. Environmetrics, 21, 698718.
  • R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.
  • Rosbjerg, R., and H. Madsen (1998), Design with uncertain design values, in Hydrology in a Changing Environment, Vol. III, edited by H. Wheater and C. Kirby, pp. 155163, Wiley, Chichester.
  • Salas, J. D., and J. Obeysekera (2013), Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events, J. Hydrol. Eng., doi:10.1061/(ASCE)HE.1943-5584.0000820.
  • Solomon, S., D. Qin, M. Manning, M. Marquis, M. Averyt, M. M. B. Tignor, H. L. Miller, and Z. Chen (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
  • Svensk Energi, Svenska Kraftnät och SveMin (2007), Riktlinjer för bestämning av dimensionerande flöden för dammanläggningar—Nyutgåva 2007, ISBN 978-91-7622-197-6.
  • Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski (2009), On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resour. Res., 45, W08417, doi:10.1029/2008WR007645.
  • Vogel, R. M., C. Yaindl, and M. Walter (2011), Nonstationarity: Flood magnification and recurrence reduction factors in the United States, J. Am. Water Resour. Assoc., 47, 464474.
  • Westra, S., and S. A. Sisson (2011), Detection of non-stationarity in precipitation extremes using a max-stable process model, J. Hydrol., 406, 119128.
  • Wigley, T. M. L. (1988), The effect of changing climate on the frequency of absolute extreme events, Clim. Monit., 17, 4455 (reprinted in Clim. Change (2009), 97, 67–76).
  • Zevenbergen, C., S. vanHerk, J. Rijke, P. Kabat, P. Bloemen, R. Ashley, A. Speers, B. Gersonius, and W. Veerbeek (2013), Taming global flood disasters. Lessons learned from Dutch experience, Nat. Hazards, 65, 12171225.