SEARCH

SEARCH BY CITATION

References

  • Abdel-Khalik, H. S. (2010), Hybrid uncertainty and sensitivity algorithms for high dimensional nonlinear models, part I: Introduction to the theory, Trans. Am. Nucl. Soc., 103, 375377.
  • Chanem, R., and S. Dham (1998), Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transp. Porous Media, 32, 239262.
  • Chen, X., I. M. Navon, and F. Fang (2011a), A dual-weighted trust-region adaptive POD 4D-VAR applied to a finite-element shallow-water equations model, Int. J. Numer. Methods Fluids, 65, 520541.
  • Chen, X., S. Akella, and I. M. Navon (2011b), A dual weighted trust-region adaptive POD 4D-Var applied to a finite volume shallow water equations model on the sphere, Int. J. Numer. Methods Fluids, 68, 377402.
  • Chen, X., B. M. Ng, Y. Sun, and C. H. Tong (2013), A flexible uncertainty quantification method for linearly coupled multi-physics systems, J. Comput. Phys., 248, 383401.
  • Clark, K. B., and C. Y. Baldwin (2000), Design Rules, The Power of Modularity, vol. 1, MIT Press, Cambridge, Mass.
  • Clement, T. P., Y. Sun, B. S. Hooker, and J. N. Petersen (1998), Modeling multi-species reactive transport in groundwater aquifers, Ground Water Monit. Rem., 18, 7992.
  • Constantine, P. G., A. Doostan, and G. Iaccarino (2009), A hybrid collocation/galerkin scheme for convective heat transfer problems with stochastic boundary conditions, Int. J. Numer. Methods Eng., 80, 868880.
  • Dagan, G. (1989), Flow and Transport in Porous Formations, Springer, New York.
  • Elman, H. C., C. W. Miller, E. T. Phipps, and R. S. Tuminaro (2011), Assessment of collocation and galerkin approaches to linear diffusion equations with random data, Int. J. Uncertainty Quantification, 1, 1933.
  • Falgout, R. (2011), HYPRE User's Manual UCRL-CODE-222953 (Version 2.8.0b), Lawrence Livermore Natl. Lab, Livermore, Calif.
  • Ghanem, R. (1998), Probabilistic characterization of transport in heterogeneous media, Comput. Method Appl. Mech. Eng., 158, 199220.
  • Ghanem, R., and P. D. Spanos (1991a), Stochastic Finite Elements: A Spectral Approach, Springer, New York.
  • Ghanem, R., and P. D. Spanos (1991b), Spectral stochastic finite-element formulation for reliability analysis, J. Eng. Mech., 117, 23512372.
  • Ghanem, R., and P. D. Spanos (2002), Stochastic Calculus: Applications in Sciences and Engineering, Birkhauser, Germany.
  • Golub, G. H., and C. F. V. Loan (1996), Matrix Computations, 3rd ed., Johns Hopkins Univ. Press, Baltimore, MD.
  • Hotelling, H. (1933), Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417441.
  • Joslyn, C., and S. Ferson (2005), Approximate representations of random intervals for hybrid uncertainty quantification, in 4th International Conference on Sensitivity Analysis of Model Output (SAMO), edited by K. M. Hanson and F. M. Hemez, pp. 453469, Los Alamos Natl. Lab., Albuquerque, N. M.
  • Kac, M., and A. J. F. Siegert (1947), An explicit representation of a stationary gaussian process, Ann. Math. Stat., 18, 438442.
  • Karhunen, K. (1947), Über lineare methoden in der wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae Ser. A. I, Math. Phys, 37, 179.
  • Knio, O. M., and O. P. Le Maître (2006), Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dyn. Res., 38, 616640.
  • Knio, O. M., and O. P. Le Maître (2010), Spectral Methods for Uncertainty Quantification, Springer, New York.
  • Li, H., and D. Zhang (2007), Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods, Water Resour. Res., 43, W09409, doi:10.1029/2006WR005673.
  • Li, H., and D. Zhang (2009), Stochastic analysis of unsaturated flow with probabilistic collocation method, Water Resour. Res., 45, W08425, doi:10.1029/2008WR007530.
  • Li, J., and D. Xiu (2009), A generalized polynomial chaos based ensemble kalman filter with high accuracy, J. Comput. Phys., 228, 54545469.
  • Lin, G., A. M. Tartakovsky, and D. M. Tartakovsky (2010), Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids, J. Comput. Phys., 229, 69957012.
  • Liu, G., Z. Lu, and D. Zhang (2007), Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loeve based moment equation approach, Water Resour. Res., 43, W07427, doi:10.1029/2006WR005193.
  • Liu, J. (2001), Monte Carlo Strategies in Scientific Computing, Springer, New York.
  • Lu, D., M. Ye, and M. C. Hill (2012), Analysis of regression confidence intervals and bayesian credible intervals for uncertainty quantification, Water Resour. Res., 48, W09521, doi:10.1029/2011WR011289.
  • McKay, M. C., R. Beckman, and W. Conover (1979), A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239245.
  • Morokoff, W., and R. Caflisch (1985), Quasi-Monte Carlo integration, J. Comput. Phys., 122, 218230.
  • Pearson, K. (1901), On lines and planes of closest fit to systems of points in space, Philos. Mag., 2, 559572.
  • Phenix, D., J. Dinaro, M. Tatagg, J. Test, J. Howard, and G. McRae (1998), Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water, Combust. Flame, 112, 132146.
  • Scheidegger, A. E. (1961), General theory of dispersion in porous media, J. Geophys. Res., 66, 32733278.
  • Sirovich, L., J. L. Lumley, and G. Berkooz (1987), Turbulence and the dynamics of coherent structures, part III: Dynamics and scaling, Q. Appl. Math., 45, 583590.
  • Sun, Y., J. N. Petersen, T. P. Clement, and B. S. Hooker (1998), Effect of reaction kinetics on predicted concentration profiles during subsurface bioremediation, J. Contam. Hydrol., 31, 359372.
  • Sun, Y., X. Lu, J. Petersen, and T. Buscheck (2004), An analytical solution of tetrachloroethylene transport and biodegradation, Transp. Porous Media, 55, 301308.
  • Sun, Y., T. Buscheck, and Y. Hao (2012), An analytic method for modeling first-order decay networks, Comput. Geosci., 39, 8697.
  • Surana, A., and A. Banaszuk (2010), Scalable uncertainty quantification in complex dynamic networks, paper presented at Conference on Decision and Control, Inst. of Electr. and Electron. Eng., Atlanta, Ga.
  • Tartakovsky, D. M. (2012), Assessment and management of risk in subsurface hydrology: A review and perspective, Adv. Water Resour., 51, 247260, doi:10.1016/j.advwatres.2012.04.007.
  • Wiener, S. (1993), The homogeneous chaos, Am. J. Math., 60, 897936.
  • Xiu, D., and G. Karniadakis (2002), The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619644.
  • Zhang, D., and Z. Lu (2004), An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loeve and polynomial expansions, J. Comput. Phys., 194, 773794.