• Anderson, M. P. (2005), Heat as a ground water tracer, Ground Water, 43, 951968.
  • Arevalillo, J. M., and H. Navarro (2011), A new method for identifying bivariate differential expression in high dimensional microarray data using quadratic discriminant analysis, BMC Bioinformatics, 12(Suppl 12):S6.
  • Arntzen, E. V., D. R. Geist, and P. E. Dresel (2006), Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river, River Res. Appl., 22, 937946.
  • Briggs, M. A., L. K. Lautz, R. P. Gordon, J. M. McKenzie, and D. K. Hare (2012), Using high resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux, Water Resour. Res., 48, 16, W02527, doi:10.1029/2011WR011227.
  • Brunke, M., and T. Gonser (1997), The ecological significance of exchange processes between rivers and groundwater, Freshwater Biol., 37, 133.
  • Cooley, J. W., and J. W. Tukey (1965), An algorithm for the machine calculation of complex Fourier series, Math. Comput., 19, 297301.
  • Cooley, W. W., and P. R. Lohnes (1971), Multivariate Data Analysis, 364 pp., John Wiley.
  • Daughney, C. J., U. Morgenstern, R. van der Raaij, and R. R. Reeves (2010), Discriminant analysis for estimation of groundwater age from hydrochemistry and well construction: Application to New Zealand aquifers, Hydrogeol. J., 18, 417428, doi:10.1007/s10040-009-0479-2.
  • Deutsch, C. V., and A. G. Journel (1998), GSLIB: Geostatistical Software Library and Users Guide, 2nd ed., 369 pp., Oxford University Press, New York.
  • Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems, Ann. Eugenic., 7, 179188.
  • Fritz, B. G., and E. V. Arntzen (2007), Effect of rapidly changing river stage on uranium flux through the hyporheic zone, Groundwater, 45(6), 753760.
  • Fritz, B. G., R. D. Mackley, N. P. Kohn, G. W. Patton, T. J. Gilmore, D. P. Mendoza, D. McFarland, A. L. Bunn, and E. V. Arntzen (2007), Investigation of the Hyporheic Zone at the 300 Area, Hanford Site, PNNL-16805, Pacific Northwest National Laboratory, Richland, Wash.
  • Gerecht, K. E., M. B. Cardenas, A. J. Guswa, A. H. Sawyer, J. D. Nowinski, and T. E. Swanson (2011), Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river, Water Resour. Res., 47, W03524, doi:10.1029/2010WR009794.
  • Ghil, M., et al. (2002), Advanced spectral methods for climatic time series, Rev. Geophys., 40, 3.13.41.
  • Gudmundsson, G., and G. Sigbjarnarson (1972), Analysis of glacier run-off and meteorological observations, J. Glaciol., 11(63), 303318.
  • Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl (2006), Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42, 114, doi:10.1029/2005WR004787.
  • Hausner, M. B., F. Suárez, K. E. Glander, N. van de Giesen, J. S. Selker, and S. W. Tyler (2011), Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data, Sensors, 11, 1085910879, doi:10.3390/s111110859.
  • Henderson, R. D., F. D. Day-Lewis, and C. F. Harvey (2009), Investigation of aquifer-estuary interaction using wavelet analysis of fiber-optic temperature data, Geophys. Res. Lett., 36, 16, doi:10.1029/2008GL036926.
  • Herrmann, R., and W. Symader (1976), Phosphate prediction model for streams by means of discriminant analysis, Hydrolog. Sci. Bull., 21, 397406, doi:10.1080/02626667609491648.
  • Hung, M. S., M.Y. Hu, M. S. Shanker, and B. E. Patuwo (1996), Estimating posterior probabilities in classification problems with neural networks, Int. J. Comput. Intell. Organ., 1, 4960.
  • Lindberg, J. W. and C. J. Chou (2001), 300 Area Process Trenches Groundwater Monitoring Plan, Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830, Pacific Northwest National Laboratory, Richland, Wash.
  • Mwakanyamale, K. E., L. D. Slater, F. D. Day-Lewis, M. Elwaseif, and C. D. Johnson (2012), Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data, Geophys. Res. Lett., 39, 16, doi:10.1029/2011GL050824.
  • Peterson, R. E., and M. P. Connelly (2004), Water movement in the zone of interaction between groundwater and the Columbia River, Hanford site, Wash., J. Hydraul. Res., 42, 5358.
  • Selker, J. S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, 18, doi:10.1029/2006WR005326.
  • Slater, L. D., D. Ntarlagiannis, F. D. Day-Lewis, K. Mwakanyamale, R. J. Versteeg, A. Ward, C. Strickland, C. D. Johnson, and J. W. Lane (2010), Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington, Water Resour. Res., 46, 113, doi:10.1029/2010WR009110.
  • Steinhorst, R. K., and R. E. Williams (1985), Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis, Water Resour. Res., 21(8), 11491156.
  • Williams, B. A., C. F. Brown, W. Um, M. J. Nimmons, R. E. Peterson, B. N. Bjornstad, D. C. Lanigan, R. J. Serne, F. A. Spane, and M. L. Rockhold (2007), Limited field investigation report for uranium contamination in the 300 area, 300 FF-5 operable unit, Hanford site, Washington, Rep. PNNL-16435, Pacific Northwest National Laboratory, Richland, Wash.