• Banks, H. T., M. L.Joyner, B.Wincheski, and W. P.Winfree (2000), Nondestructive evaluation using a reduced-order computational methodology, Inverse Probl., 16, 929945.
  • Coleman, T. F., and Y.Li (1996), An interior, trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim. 6, 418445.
  • Daily, W., and A.Ramirez (1995), Electrical-resistance tomography during in-situ trichloroethylene remediation at the Savanna river site, J. Appl. Geophys., 33, 239249.
  • DeJosselin De Jong, G. (1958), Longitudinal and transverse diffusion in granular deposits, Trans. AGU, 39, 16.
  • Deutsch, C. V., and A. G.Journel (1998), GSLIB: Geostatistical Software Library and User's Guide, Oxford Univ. Press, New York.
  • Ferré, T., L.Bentley, A.Binley, N.Linde, A.Kemna, K.Singha, K.Holliger, J. A.Huisman, and B.Minsley (2009), Critical steps for the continuing advancement of hydrogeophysics, EOS Trans. AGU, 90(23), 200, doi:10.1029/2009Eo230004.
  • Fowler, D. E., and S. M. J.Moysey (2011), Estimation of aquifer transport parameters from resistivity monitoring data within a coupled inversion framework, J. Hydrol., 409, 545554, doi:10.1016/j.jhydrol.2011.08.063.
  • Freeze, R. A., and J. A. Cherry (1979), Groundwater, 604 pp., Prentice-Hall, Englewood Cliffs, N. J.
  • Freyberg, D. L. (1986), A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 22(13), 20312046, doi:10.1029/WR022i013p02031.
  • Greenhalgh, S. A., Z.Bing, and A.Green (2006), Solutions, algorithms and inter-relationships for local minimization search geophysical inversion, J. Geophys. Eng., 3, 101113, doi:10.1088/1742-2132/3/2/001.
  • Hinnell, A. C., T. P. A.Ferre, J. A.Vrugt, J. A.Huisman, S.Moysey, J.Rings, and M. B.Kowalsky (2010), Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion, Water Res. Res., 46, W00D40, doi:10.1029/2008WR007060.
  • Jin, B., T.Khan, and P.Maass (2011), A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Num. Meth. Eng., 89, 337353, doi:10.1002/nme.3247.
  • Kemna, A., J.Vanderborght, B.Kulessa, and H.Vereecken (2002), Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267, 125146.
  • Kunisch, K., and S.Volkwein (2003), Galerkin proper orthogonal decomposition for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40(2), 492515.
  • LaBrecque, D. J., and X.Yang, (2001), Difference inversion of ERT data: A fast inversion method for 3-D in-situ monitoring, J. Environ. Eng. Geophys., 6(2), 8389.
  • Lehikoinen, A., J. M. J.Huttunen, S.Finsterle, M. B.Kowalsky, and J. P.Kaipio (2010), Dynamic inversion for hydrogeophysical process monitoring with electrical resistance tomography under model uncertainties, Water Resour. Res., 46, W04513, doi:10.1029/2009WR008470.
  • Lesmes, D. P., and S. P.Friedman (2005), Relationships between the electrical and hydrogeological properties of rocks and soils, in Hydrogeophysics, edited by Y.Rubin and S. S.Hubbard, pp. 87128, Springer, Dordrecht, Netherlands.
  • Loris, I., G.Norlet, I.Daubechies, and F. A. Dahlen (2007), Tomographic inversion using l1-norm regularization of wavelet coefficients, Geophys. J. Int., 170, 359370, doi:10.1111/j.1365-246X.2007.03409.x.
  • Moysey, M. S., K.Singha, and R.Knight (2005), A framework for inferring field-scale rock physics relationship through numerical simulation, Geophys. Res. Lett., 32, L08304, doi:10.1029/2004GL022152.
  • Pidlisecky, A., E.Haber, and R.Knight (2007), RESINVM3D: A 3D resistivity inversion package, Geophysics, 72(2), H1H10, doi:10.1190/1.2402499.
  • Pidlisecky, A., K.Singha, and F. D.Day-Lewis (2011), A distribution-based parameterization for improved tomographic imaging of solute plumes, Geophys. J. Int., 187, 214224, doi:10.1111/j.1365-246X.2011.05131.x.
  • Pinnau, R. (2008), Model reduction via proper orthogonal decomposition, in Model Order Reduction: Theory, Research Aspects and Applications, edited by W. H. A.Schilder and H.van der Vorst, pp. 96109, Springer, New York.
  • Rathinam, M., and L. R.Petzold (2004), A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41(5), 18931925.
  • Rucker, D. F., and T. P. A.Ferré (2004), Parameter estimation for soil hydraulic properties using zero-offset borehole radar: Analytical method, Soil Sci. Soc. Am. J., 68, 15601567.
  • Singha, K., and S. M.Gorelick (2005), Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis, Water Resour. Res., 41, W05023, doi:10.1029/2004WR003460.
  • Strebelle, S., 2000, Sequential simulation drawing structures from training images, PhD dissertation, 187 pp., Stanford Univ., Stanford, Calif.
  • Tikhonov, A. N., and V. Y.Arsenin (1977), Solutions of Ill-Posed Problems, John Wiley and Sons, New York.