SEARCH

SEARCH BY CITATION

References

  • Addison, P. S. (2005), Wavelet transforms and the ECG: A review, Physiol. Meas., 26, 155199.
  • Asseng, S., I. R. P. Fillery, F. X. Dunin, B. A. Keating, and H. Meinke (2001), Potential deep drainage under wheat crops in a Mediterranean climate: I. Temporal and spatial variability, Aust. J. Agric. Res., 52, 4556.
  • Báez-Cazull, S. E., J. T. McGuire, I. M. Cozzarelli, and M. A. Voytek (2008), Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis, J. Environ. Qual., 37, 3046, doi:10.2134/jeq2007.0169.
  • Baun, A., L. Ask, A. Ledin, T. H. Christensen, and P. L. Bjerg (2003), Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark), J. Contam. Hydrol., 65, 269291.
  • Becker, C. J. (2002), Hydrogeology and leachate plume delineation at a closed municipal landfill, Norman, Oklahoma, U.S. Geol. Surv. Water Resour. Invest. Rep. 01–4168, 36 pp.
  • Beecham, S., and R. K. Chowdhury (2010), Temporal characteristics and variability of point rainfall: A statistical and wavelet analysis, Int. J. Climatol., 30, 458473.
  • Bjerg, P. L., H. J. Albrechtsen, P. Kjeldsen, T. H. Christensen, and I. Cozzarelli (2003), The groundwater geochemistry of waste disposal facilities, in Treatise on Geochemistry, Environmental Geochemistry, vol. 9, edited by H. D. Holland, K. K. Turekian, and B. Sherwood Lollar, pp. 579612, Elsevier, New York.
  • Bjerg, P. L., N. Tuxen, L. A. Reitzel, H. J. Albrechtsen, and P. Kjeldsen (2011), Natural attenuation processes in landfill leachate plumes at three Danish sites, Ground Water, 49(5), 688705.
  • Bloschl, G., and M. Sivapalan (1995), Scale issues in hydrological modeling: A review, Hydrol. Processes, 9, 251290.
  • Breit, G. N., M. L. W. Tuttle, I. M. Cozzarelli, S. C. Christenson, J. B. Jaeschke, D. L. Fey, and C. J. Berry (2005), Results of chemical and isotopic analyses of sediment and ground water form alluvium of the Canadian river near a closed municipal landfill, Norman, Oklahoma, Part 2, U.S. Geol. Surv. Open File Rep. 2008–1134, 35 pp.
  • Champ, D. R., J. Gulens, and R. E. Jackson (1979), Oxidation-reduction sequences in groundwater flow systems, Can. J. Earth Sci., 127, 85108.
  • Chapelle, F. H. (2001), Ground-Water Microbiology and Geochemistry, John Wiley, New York.
  • Christensen, T. H., P. L. Bjerg, S. Banwart, R. Jakobsen, G. Heron, and H.-J. Albrechtsen (2000), Characterization of redox conditions in groundwater contaminant plumes, J. Contam. Hydrol., 45(3–4), 165241.
  • Christensen, T. H., P. Kjeldsen, P. L. Bjerg, D. L. Jensen, J. B. Christensen, A. Baun, H.-J. Albrechtsen, and G. Heron (2001), Biogeochemistry of landfill leachate plumes, Appl. Geochem., 16, 659718.
  • Christenson, S., M. A. Scholl, J. L. Schlottmann, and C. J. Becker (1999), Ground-water and surface-water hydrology of the Norman Landfill Research Site, in Toxic Substances Hydrology Program—Proceedings of the Technical Meeting, U.S. Geol. Surv. Water Resour. Invest. Rep. 99–4018C, pp. 501507.
  • Comrie, A. C., and E. C. Glenn (1998), Principal components-based regionalization of precipitation regimes across the southwest United States and northern Mexico, with an application to monsoon precipitation variability, Clim. Res., 10, 201215.
  • Cozzarelli, I. M., J. M. Suflita, G. A. Ulrich, S. H. Harris, J. L. Schlottmann, and S. Christenson (2000), Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate, Environ. Sci. Technol., 34(18), 40254033.
  • Cozzarelli, I. M., B. A. Bekins, M. J. Baedecker, G. R. Aiken, R. P. Eganhouse, and M. E. Tuccillo (2001), Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume, J. Contam. Hydrol., 53(3–4), 369385.
  • Cozzarelli, I. M., J. K. Bohlke, J. Masoner, G. N. Breit, M. M. Lorah, M. L. W. Tuttle, and J. B. Jaeschke (2011), Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma, Ground Water, 49(5), 663687.
  • Das, N. N., and B. P. Mohanty (2008), Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape using SMEX02: A wavelet approach, Remote Sens. Environ., 112, 522534.
  • Daubechies, I. (1992), Ten Lectures on Wavelets, SIAM, Philadelphia, Pa.
  • Diou, A., C. Dumont, O. Laligant, M. Toubin, F. Truchetet, E. P. Verrecchia, M. A. Abidi (1999), Multiscale analysis of range image: Its use for growth increment characterization, Opt. Eng., 38(12), 20162021.
  • Eganhouse, R. P., I. M. Cozzarelli, M. A. Scholl, and L. L. Matthews (2001), Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: Using alkylbenzenes as a process probe, Ground Water, 39(2), 192202.
  • Farge, M. (1992), Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 395457.
  • Fendorf, S., H. A. Michael, and A. van Geen (2010), Spatial and temporal variations of groundwater arsenic in south and Southeast Asia, Science, 328(5982), 11231127.
  • Foufoula-Georgiou, E., and P. Kumar (1994), Wavelets in Geophysics, Academic, San Diego, Calif.
  • Fugal, D. L. (2009), Conceptual Wavelets in Digital Signal Processing, Space and Signals Tech. Publ., San Diego, Calif.
  • Geesey, G. G., and A. C. Mitchell (2008), Need for direct measurements of coupled microbiological and hydrological processes at different scales in porous media systems, J. Hydrol. Eng., 13, 2836.
  • Grinsted, A., S. Jevrejeva, and J. Moore (2004), Application of the crosswavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes Geophys., 11, 561566.
  • Grossman, E. L., L. A. Cifuentes, and I. M. Cozzarelli (2002), Anaerobic methane oxidation in a landfill-leachate plume, Environ. Sci. Technol., 36(11), 24362442.
  • Guan, K., S. E. Thompson, C. J. Harman, N. B. Basu, P. S. C. Rao, M. Sivapalan, A. I. Packman, and P. K. Kalita (2011), Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained Midwestern watershed, Water Resour. Res., 47, W00J02, doi:10.1029/2010WR009997.
  • Haack, S. K., and B. A. Bekins (2000), Microbial populations in contaminant plumes, Hydrogeol. J., 8(1), 6376.
  • Haack, S. K., L. R. Fogarty, T. G. West, E. W. Alm, J. T. McGuire, D. T. Long, D. W. Hyndman, and L. J. Forney (2004), Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer, Environ. Microbiol., 6(5), 438448.
  • Hariprasath, S., and V. Mohan (2009), Iris pattern recognition using complex wavelet and wavelet packet transform, J. Comput. Appl., 2(2), 1823.
  • Harris, S. H. Jr, J. D. Istok, and J. M. Sufiita (2006), Changes in organic matter biodegradability influencing sulfate reduction in an aquifer contaminated by landflll leachate, Microb. Ecol., 51(4), 535542.
  • Heron, G., and T. H. Christensen (1995), Impact of sediment bound iron on redox buffering in a landfill polluted aquifer (Vejen, Denmark), Environ. Sci. Technol., 29, 187192.
  • Heron, G., P. L. Bjerg, P. Gravesen, L. Ludvigsen, and T. H. Christensen (1998), Geology and sediment geochemistry of a landfill leachate contaminated aquifer (Grindsted, Denmark), J. Contam. Hydrol., 29(4), 301317.
  • Hunter, K. S., Y. Wang, and P. van Cappellen (1998), Kinetic modeling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism, and geochemistry, J. Hydrol., 209, 5380.
  • Jana, R. B., and B. P. Mohanty (2012), On topographic controls of soil hydraulic parameter scaling at hill-slope scales, Water Resour. Res., 48, W02518, doi:10.1029/2011WR011204.
  • Jardine, P. M. (2008), Influence of coupled processes on contaminant fate and transport in subsurface environments, Adv. Agron., 99, 199, doi:10.1016/S0065-2113(08)00401-X.
  • Jolley, D. M., T. F. Ehrhorn, and J. Horn (2003), Microbial impacts to the near-field environment geochemistry: A model for estimating microbial communities in repository drifts at Yucca Mountain, J. Contam. Hydrol., 62–63, 553575.
  • Kamolpornwijit, W., L. Liang, O. R. West, G. R. Moline, A. B. Sullivan (2003), Preferential flow path development and its influence on long-term PRB performance: Column study, J. Contam. Hydrol., 66(3–4), 161178.
  • Kia, S. H., H. Henao, and G.-A. Capolino (2009), Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation, IEEE Trans. Ind. Appl., 45(4), 13951404.
  • Kjeldsen, P., P. L. Bjerg, J. K. Pedersen, K. Rügge, and T. H. Christensen (1998), Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source: Landfill hydrology and leachate migration, Waste Manage. Res., 16(1), 1422.
  • Kumar, P., and E. Foufoula-Georgiou (1997), Wavelet analysis for geophysical applications, Rev. Geophys., 35(4), 385412.
  • Kusel, K. (2003), Microbial cycling of iron and sulfur in acidic coal mining lake sediments, Water Air Soil Pollut., 3(1), 6790.
  • Labat, D., R. Ababou, and A. Mangin (2000), Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses, J. Hydrol., 238, 149178.
  • Langmuir, D. (1997), Aqueous Environmental Geochemistry, Prentice Hall, Upper Saddle River, N. J.
  • Lau, K.-M., and H. Weng (1995), Climate signal detection using wavelet transform: How to make a time series sing, Bull. Am. Meteorol. Soc., 76(12), 23912402.
  • Lorah, M. M., I. M. Cozzarelli, and J. K. Böhlke (2009), Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume, J. Contam. Hydrol., 105(3–4), 99117.
  • Lovley, D. R., and F. H. Chapelle (1995), Deep subsurface microbial processes, Rev. Geophys., 33, 365381.
  • Mallat, S. (1999), A Wavelet Tour of Signal Processing, Academic, New York.
  • Mangimbulude, J. C., B. M. van Breukelen, A. S. Krave, N. M. van Straalen, and W. F. M. Roling (2009), Seasonal dynamics in leachate hydrochemistry and natural attenuation in surface run-off water from a tropical landfill, Waste Manage., 29(2), 829838.
  • Maraun, D., and J. Kurths (2004), Cross-wavelet analysis: Significance testing and pitfalls, Nonlinear Processes Geophys., 11, 505514.
  • Martinez, B., and M. A. Gilabert (2009), Vegetation dynamics from NDVI time series analysis using the wavelet transform, Remote Sens. Environ., 113, 18231842.
  • McGuire, J. T., E. W. Smith, D. T. Long, D. W. Hyndman, S. K. Haack, M. J. Klug, and M. A. Velbel (2000), Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents, Chem. Geol., 169(3–4), 471485.
  • McGuire, J. T., D. T. Long, M. J. Klug, S. K. Haack, and D. W. Hyndman (2002), Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reaction rates in a contaminated aquifer, Environ. Sci. Technol., 36(12), 26932700.
  • Megonigal, J. P., M. E. Hines, and P. T. Visscher (2004), Anaerobic Metabolism: Linkages to Trace Gases and Anaerobic Processes, Elsevier, Oxford, U. K.
  • Mercer, J. W. (1983), The Role of the Unsaturated Zone in Radioactive and Hazardous Waste Disposal, Butterworth-Heinemann, Oxford, U. K.
  • Merry, R., and M. Steinbuch (2005), Wavelet theory and applications: A literature study, Dep. of Mech. Eng., Control Syst. Technol. Group, Eindhoven Univ. of Technol., Eindhoven, Netherlands.
  • Mills, A. L., P. E. Bell, and A. T. Herlihy (1989), Microbes, sediments, and acidified waters: The importance of biological buffering, in Acid Stress and Aquatic Microbial Interactions, edited by S. S. Rao, pp. 119, CRC Press, Boca Raton, Fla.
  • Milne, A. E., C. J. A. Macleod, P. M. Haygarth, J. M. B. Hawkins, and R. M. Lark (2009), The wavelet packet transform: A technique for investigating temporal variation of river water solutes, J. Hydrol., 379, 119.
  • Misiti, M., Y. Misiti, G. Oppenheim, and J. M. Poggi (2008), MATLAB User's Guide: Wavelet Toolbox™ 4, The Math Works Inc, Natick, Mass.
  • Mitchell, C. P. J., and B. A. Branfireun (2005), Hydrogeomorphic controls on reduction–oxidation conditions across boreal upland–peatland interfaces, Ecosystems, 8(7), 731747.
  • Mukherjee, A., M. von Brömssen, B. R. Scanlon, P. Bhattacharya, A. E. Fryar, M. A. Hasan, K. M. Ahmed, D. Chatterjee, G. Jacks, and O. Sracek (2008), Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin, J. Contam. Hydrol., 99(1–4), 3148.
  • Pacific, V. J., B. L. McGlynn, D. A. Riveros-Iregui, D. L. Welsch, and H. E. Epstein (2011), Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana, Hydrol. Processes, 25(5), 811827.
  • Partal, T. (2012), Wavelet analysis and multi-scale characteristics of the runoff and precipitation series of the Aegean region (Turkey), Int. J. Climatol., 32(1), 108120.
  • Percival, D. B. (2008), Analysis of geophysical time series using discrete wavelet transforms: An overview, in Lecture Notes in Earth Sciences, vol. 112, edited by R. V. Donner and S. M. Barbosa, pp. 6179, Springer, Berlin.
  • Percival, D. B., and A. T. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge Univ. Press, Cambridge, U. K.
  • Qian, J., and K. Mopper (1996), Automated high performance, high temperature combustion total organic carbon analyzer, Anal. Chem., 68, 30903097.
  • Quiroz, R., C. Yarleque, A. Posadas, V. Mares, and W. W. Immerzeel (2011), Improving daily rainfall estimation from NDVI using a wavelet transform, Environ. Modell. Software, 26, 201209.
  • Raz-Yaseef, N., E. Rotenberg, and D. Yakir (2010), Effects of spatial variations in soil evaporation caused by tree shading on water fiux partitioning in a semi-arid pine forest, Agric. Forest Meteorol., 150, 454462.
  • Röling, W. F. M., B. M. van Breukelen, M. Braster, B. Lin, and H. W. van Verseveld (2001), Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer, Appl. Environ. Microbiol., 67(10), 46194629.
  • Sang, Y.-F. (2012), A practical guide to discrete wavelet decomposition of hydrologic time series, Water Resour. Manage., 26, 33453365.
  • Schlottmann, J. L. (2001), Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma, 1995, U.S. Geol. Surv. Water Resour. Invest. Rep. 00–4238, 44 pp.
  • Scholl, M. A., and S. C. Christenson (1998), Spatial variation in hydraulic conductivity determined by slug tests in the Canadian River alluvium near the Norman Landfill, Norman, Oklahoma, U.S. Geol. Surv. Water Resour. Invest. Rep. 97–4292, 28 pp.
  • Scholl, M. A., S. C. Christenson, and I. M. Cozzarelli (2005), Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998–2000, U.S. Geol. Surv. Water Resour. Invest. Rep. 2004–5238, 60 pp.
  • Scholl, M. A., I. M. Cozzarelli, and S. C. Christenson (2006), Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate, J. Contam. Hydrol., 104(3–4), 435.
  • Shao, X.-G., A. K.-M. Leung, and F.-T. Chau (2003), Wavelet: A new trend in chemistry, Acc. Chem. Res., 36(4), 276283.
  • Sinke, A. J. C., O. Dury, and J. Zobrist (1998), Effects of a fluctuating water table: Column study on redox dynamics and fate of some organic pollutants, J. Contam. Hydrol., 33(1–2), 231246.
  • Smith, K. S. (2007), Strategies to predict metal mobility in surficial mining environments, in Reviews in Engineering Geology, Volume XVII: Understanding and Responding to Hazardous Substances at Mine Sites in the Western United States, edited by J. V. DeGraff, pp. 2545, The Geol. Soc. of Am., Boulder, Colo.
  • Statom, R. A., G. D. Thyne, and J. E. McCray (2004), Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA, Environ. Geol., 45(7), 982991.
  • Taylor, S. W., and P. R. Jaffe (1990), Biofilm growth and the related changes in the physical properties porous medium, Water Resour. Res., 26(9), 21532159.
  • Torrence, C., and G. P. Compo (1998), A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79(1), 6178.
  • Tuttle, M. L. W., G. N. Breit, and I. M. Cozzarelli (2009), Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA, Chem. Geol., 265, 455467.
  • Tuxen, N., H.-J. Albrechtsen, and P. L. Bjerg (2006), Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques, J. Contam. Hydrol., 85(3–4), 179194.
  • Ulrich, G. A., G. N. Breit, I. M. Cozzarelli, and J. M. Suflita (2003), Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer, Environ. Sci. Technol., 37(6), 10931099.
  • Van Breukelen, B. M., W. F. M. Röling, J. Groen, J. Griffioen, and H. W. Van Verseveld (2003), Biogeochemistry and isotope geochemistry of a landfill leachate plume, J. Contam. Hydrol., 65(3–4), 245268.
  • Wanty, R. B., and B. R. Berger (2006), Geologic, hydrologic, and geochemical interpretations of mineral deposits as analogs for understanding transport of environmental contaminants, J. Geochem. Explor., 88, 162165.
  • Zhang, Q., C. Liu, C.-Y. Xu, Y. Xu, and T. Jiang (2006), Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China, J. Hydrol., 324(1–4), 255265.