SEARCH

SEARCH BY CITATION

References

  • Al-Jaroudi, S. S., A.Ul-Hamid, A.-R. I.Mohammed, and S.Saner (2007), Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples, Powder Technol., 175(3), 115121.
  • Algive, L., S.Bekri, F. H.Nader, O.Lerat, and O.Vizika (2012), Impact of diagenetic alterations of the petrphysical and multiphase flow properties of carbonate rocks using a reactive pore network modeling approach, Oil Gas Sci. Technol., 67(1), 147160.
  • Andre, L., P.Audigane, M.Azaroual, and A.Menjoz (2007), Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Convers. Manage., 48(6), 17821797.
  • Assayag, N., J.Matter, M.Ader, D.Goldberg, and P.Agrinier (2009), Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects, Chem. Geol., 265(1–2), 227235.
  • Bachu, S., and J. J.Adams (2003), Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution, Energy Convers. Manage., 44(20), 31513175.
  • Bernabé, Y., W. F.Brace, and B.Evans (1982), Permeability, porosity and pore geometry of hot-pressed calcite, Mech. Mater, 1(3), 173183.
  • Bernabé, Y., U.Mok, and B.Evans (2003), Permeability-porosity relationships in rocks subjected to various evolution processes, Pure Appl. Geophys., 160(5), 937960.
  • Birkholzer, J. T., Q.Zhou, and C.-F.Tsang (2009), Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems, Int. J. Greenhouse Gas Control, 3(2), 181194.
  • Biswal, B., P. E.Oren, R.Held, S.Bakke, and R.Hilfer (2007), Stochastic multiscale model for carbonate rocks, Phys. Rev. E, 75(6), 061303-1061303-5.
  • Biswal, B., R. J.Held, V.Khanna, J.Wang, and R.Hilfer (2009), Towards precise prediction of transport properties from synthetic computer tomography of reconstructed porous media, Phys. Rev. E, 80(4), 041301-1041301-13.
  • Bourbie, T., and B.Zinszner (1985), Hydrualic and acoustic properties as a function of porosity in fontainebleau sandstone, J. Geophys. Res., 90(B13), 11,52411,532.
  • Brosse, E., et al. (2010), Selection and characterization of geological sites able to host a pilot-scale CO2 storage in the paris basin (GeoCarbone-PICOREF), Oil Gas Sci. Technol., 65(3), 375403.
  • Burton, M., N.Kumar, and S. L.Bryant (2008), Time-dependent injectivity during CO2 storage in aquifers, in SPE/DOE Symposium on Improved Oil Recovery, SPE Paper 113937, pp. 115, Tulsa, Okla.
  • Butler, J. N. (1982), Carbon Dioxide Equilibria and their Applications, Addison-Wesley, Reading, Mass.
  • Celia, M. A., J. M.Nordbotten, B.Court, M.Dobossy, and S.Bachu (2011), Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells, Int. J. Greenhouse Gas Control, 5(2), 257269.
  • Doughty, C., and K.Pruess (2004), Modeling supercritical CO2 injection in heterogeneous porous media, Vadose Zone J., 3, 837847.
  • Duan, Z. H., R.Sun, C.Zhu, and I. M.Chou (2006), An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-, Mar. Chem., 98(2–4), 131139.
  • Ellis, B. R., J. P.Fitts, G. S.Bromhal, D. L.McIntyre, R.Tappero, and C. A.Peters (2013), Dissolution-driven permeability reduction of a fractured carbonate caprock, Environ. Eng. Sci., 30(4), 187193.
  • Ellis, B. R., C. A.Peters, J. P.Fitts, G. S.Bromhal, D. L.McIntyre, R. P.Warzinski, and E.Rosenbaum (2011), Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow, Greenhouse Gas. Sci. Technol., 1, 248260.
  • Emmanuel, S., and B.Berkowitz (2005), Mixing-induced precipitation and porosity evolution in porous media, Adv. Water Res., 28(4), 337344.
  • Fang, Y. L., G. T.Yeh, and W. D.Burgos (2003), A general paradigm to model reaction-based biogeochemical processes in batch systems, Water Resour. Res., 39(4), 1083, doi:10.1029/2002WR001694.
  • Flemisch, B., et al. (2011), DuMux: DUNE for multi-{phase,component,scale,physics, …} flow and transport in porous media, Adv. Water Res., 34(9), 11021112.
  • Gherardi, F., T. F.Xu, and K.Pruess (2007), Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir, Chem. Geol., 244(1–2), 103129.
  • Gouze, P., and L.Luquot (2011), X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution, J. Contam. Hydrol., 120–121, 4555.
  • Grimstad, A.-A., S.Georgescu, E.Lindeberg, and J.-F.Vuillaume (2009), Modelling and simulation of mechanisms for leakage of CO2 from geological storage, Energy Procedia, 1(1), 25112518.
  • Kang, Q., P.Lichtner, H.Viswanathan, and A.Abdel-Fattah (2010), Pore scale modeling of reactive transport involved in geologic CO2 sequestration, Transp. Porous Media, 82(1), 197213.
  • Kim, D., C. A.Peters, and W. B.Lindquist (2011), Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers, Water Resour. Res., 47 W01505, doi:10.1029/2010WR009472.
  • Lasaga, A. C. (1998), Kinetic Theory in the Earth Sciences, Princeton Univer. Press, Princeton, N. J.
  • Li, L., C. A.Peters, and M. A.Celia (2006), Upscaling geochemical reaction rates using pore-scale network modeling, Adv. Water Res., 29(9), 13511370.
  • Li, X., H.Huang, and P.Meakin (2010), A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution, Int. J. Heat Mass Transfer, 53(13–14), 29082923.
  • Lindquist, W. B., S. M.Lee, D. A.Coker, K. W.Jones, and P.Spanne (1996), Medial axis analysis of void structure in three-dimensional tomo-graphic images of porous media, J. Geophys. Res., 101, 82978310.
  • Liu, F., P.Lu, C.Zhu, and Y.Xiao (2011), Coupled reactive flow and transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest U.S.A, Int. J. Greenhouse Gas Control, 5(2), 294307.
  • Luquot, L., and P.Gouze (2009), Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chem. Geol., 265(1–2), 148159.
  • Martys, N. S., S.Torquato, and D. P.Bentz (1994), Universal scaling of fluid permeability for sphere packings, Phys. Rev. E, 50(1), 403408.
  • Mehmani, Y., T.Sun, M. T.Balhoff, P.Eichhubl, and S.Bryant (2012), Multiblock pore-scale modeling and upscaling of reactive transport: Application to carbon sequestration, Transp. Porous Media, 95(2), 305326.
  • Mukherji, K. K., and G. M.Young (1973), Diagenesis of the black river (middle ordovician) limestones in Southern Ontario, Canada, Sediment. Geol., 9, 2151.
  • Nogues, J. P. (2012), Investigations in Upscaling Transport and Geochemistry in Porous Media: Modeling CO2 Sequestration at the Pore, Continuum and Reservoir Scales, Princeton Univ. Press, Princeton, N. J.
  • Nogues, J. P., B.Court, M.Dobossy, J. M.Nordbotten, and M. A.Celia (2012), A methodology to estimate maximum probable leakage along old wells in a geological sequestration operation, Int. J. Greenhouse Gas Control, 7, 3947.
  • Noiriel, C., P.Gouze, and D.Bernard (2004), Investigation of porosity and permeability effects from microstructure changes during limestone dissolution, Geophys. Res. Lett., 31, L24603, doi:10.1029/2004GL021572.
  • Noiriel, C., D.Bernard, P.Gouze, and X.Thibault (2005), Hydraulic properties and microgeometry evolution accompanying limestone dissolution by acidic water, Oil Gas Sci. Technol., 60(1), 177192.
  • Pape, H., C.Clauser, and J.Iffland (1999), Permeability prediction based on fractal pore-space geometry, Geophysics, 64(5), 14471460.
  • Pawar, R. J., T. L.Watson, and C. W.Gable (2009), Numerical simulation of CO2 leakage through abandoned wells: Model for an abandoned site with observed gas migration in Alberta, Canada, Energy Procedia, 1(1), 36253632.
  • Peters, C. A. (2009), Accessibilities of reactive minerals in consolidated sedimentary rock: An imaging study of three sandstones, Chem. Geol., 265(1–2), 198208.
  • Plummer, L. N., T. M. L.Wigley, and D. L.Parkhurst (1978), The kinetics of calcite dissolution in CO2-water systems at 5°C to 60°C and 0.0 to 1.0 atm CO2, Am. J. Sci., 278, 179216.
  • Pruess, K., T.Xu, J.Apps, and J.Garcia (2003), Numerical modeling of aquifer disposal of CO2, SPE J., 8(1), 4960.
  • Raoof, A., and S.Hassanizadeh (2010), A new method for generating pore-network models of porous media, Transp. Porous Media, 81(3), 391407.
  • Shin, H., W. B.Lindquist, D. L.Sahagian, and S. R.Song (2005), Analysis of the vesicular structure of basalts, Comput. Geosci., 31(4), 473487.
  • Singurindy, O., and B.Berkowitz (2003), Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock, Water Resour. Res., 39, 1016, doi:10.1029/2001WR001055.
  • Smith, M. M., Y.Sholokhova, Y.Hao, and S. A.Carroll (2012), Evaporite caprock integrity: An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure, Environ. Sci. Technol., 47(1), 262268.
  • Steefel, C., and K. T. B.MacQuarrie (1996), Approaches to modeling of reactive transport in porous media, in Reactive Transport in Porous Media, edited by P. C.Lichtner, C.Steefel, and E. H.Oelkers, pp. 82129, Mineral. Soc. of Am., Washington, D. C.
  • Steefel, C., D. J.DePaolo, and P. C.Lichtner (2005), Reactive transport modeling: An essential tool and a new research approach for the Earth Sciences, Earth Planet. Sci. Lett., 240, 539558.
  • Stehli, F. G., and J.Hower (1961), Mineralogy and early diagenesis of carbonate sediments, J. Sediment. Petrol., 31(3), 358371.
  • Sutera, S. P. (1993), The history of Poiseuille's law, Annu. Rev. Fluid Mech., 25, 120.
  • Szymczak, P., and A. J. C.Ladd (2009), Wormhole formation in dissolving fractures, J. Geophys. Res., 114, B06203, doi:10.1029/2008JB006122.
  • Tartakovsky, A. M., P.Meakin, T. D.Scheibe, and B. D.Wood (2007), A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media, Water Resour. Res., 43, W05437, doi:10.1029/2005WR004770.
  • Tartakovsky, A. M., G.Redden, P. C.Lichtner, T. D.Scheibe, and P.Meakin (2008), Mixing-induced precipitation: Experimental study and multiscale numerical analysis, Water Resour. Res., 44, W06S04, doi:10.1029/2006WR005725.
  • Usenmez, S., G. M.Friedman, and D. C.Kopaska-Merkel (1988), Fabric and composition of dolostones and dedolomites from near Karapinar (Adana, Southern Turkey), Carbonates Evaporites, 2(2), 101108.
  • White, M. D., and B. P.McGrail (2005), STOMP subsurface transport over multiple phases. Version 1.0. Addendum: ECKEChem equilibrium-conservation-kinetic equation chemistry transport Report, Pacific Northwest Natl. Lab., Richland, Wash.
  • Wolery, T. J., K. J.Jackson, W. L.Bourcier, C. J.Bruton, B. E.Viani, K. G.Knauss, and J. M.Delany (1990), Current status of the EQ3/6 software package for geochemical modeling, in Chemical Modeling of Aqueous Systems II, edited by D. C.Melchior and R. L.Bassett, pp. 104116, American Chemical Society, Washington, DC.
  • Xu, T., J. A.Apps, and K.Pruess (2005), Mineral sequestration of carbon dioxide in a sandstone-Shale system, Chem. Geol., 217(3–4), 295318.
  • Xu, T., E.Sonnenthal, N.Spycher, and K.Pruess (2006), TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Comput. Geosci., 32(2), 145165.
  • Xu, T., J. A.Apps, K.Pruess, and H.Yamamoto (2007), Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chem. Geol., 242(3–4), 319346.
  • Yoon, H., A. J.Valocchi, C. J.Werth, and T. A.Dewers (2013), Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network, Water Resour. Res., 48, W02524, doi:10.1029/2011WR011192.
  • Zhang, C. Y., K.Dehoff, N.Hess, M.Oostrom, T. W.Wietsma, A. J.Valocchi, B. W.Fouke, and C. J.Werth (2010), Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system, Environ. Sci. Technol., 44(20), 78337838.