SEARCH

SEARCH BY CITATION

References

  • Alpert, M., and H. Raiffa (1982), A progress report on the training of probability assessors, in Judgment Under Uncertainty: Heuristics and Biases, edited by D. Kahneman, P. Slovic, and A. Tversky, pp. 294–305, Cambridge University Press, Cambridge, U.K.
  • Balkema, A. A., and L. de Haan (1974), Residual lifetime at great age, Ann. Probab., 2, 792804.
  • Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels (2004), Statistics of Extremes. Theory and Applications, Wiley Ser. in Probab. and Stat., John Wiley & Sons, West Sussex, England.
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu (1995), A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 11901208.
  • Casella, G., and R. L. Berger (2002), Statistical Inference, 2nd ed., Thomson Learning, Duxbury.
  • Casson, E., and S. G. Coles (1999), Spatial regression models for extremes, Extremes, 1, 449468.
  • Chiverell, R., and M. Jakob (2012), Radiocarbon dating: Alluvial fan/debris cone evolution and hazards, in Dating Torrential Processes on Fans and Cones–Methods and Their Application for Hazard and Risk Assessment, Adv. in Global Change Res., edited by M. Schneuwly-Bollschweiler, M. Stoffel, and M. Rudolf-Miklau, Springer, Dordrecht.
  • Clague, J. J., S. G. Evans, V. N. Rampton, and G. J. Woodsworth (1995), Improved age estimates for the White River and Bridge River tephras, western Canada. Can. J. Earth Sci., 32, 11721179.
  • Coles, S. G. (2001), An Introduction to Statistical Modelling of Extreme Values, Springer Ser. in Stat., Springer, London.
  • Coles, S. G., and M. J. Dixon (1999), Likelihood-based inference for extreme value models, Extremes, 2, 523.
  • Coles, S. G., and E. A. Powell (1996), Bayesian methods in extreme value modelling: A review and new developments, Int. Stat. Rev., 64, 119136.
  • Coles, S. G., and J. A. Tawn (1996), A Bayesian analysis of extreme rainfall data, J. R. Stat. Soc. C, 45, 463478.
  • Davison, A. C., and D. V. Hinkley (1997), Bootstrap Methods and Their Applications, Cambridge University Press, Cambridge, U.K.
  • Davison, A. C., and R. L. Smith (1990), Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. B, 52, 393442.
  • Diebolt, J., A. Guillou, and I. Rached (2007), Approximation of the distribution of excesses through a generalized probability-weighted moments method, J. Stat. Plann. Inference, 137, 841857.
  • Efron, B., and R. J. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.
  • Embrechts, P., C. Klüppelberg, and T. Mikosch (1997), Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin.
  • Garthwaite, P. H., J. B. Kadane, and A. O'Hagan (2005), Statistical methods for eliciting probability distributions, J. Am. Stat. Assoc., 100, 680701.
  • Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996), Markov Chain Monte Carlo in Practice, Chapman & Hall/CRC, New York.
  • Greenland, S. (2006), Bayesian perspective for epidemiological research: I. Foundations and basic methods, Int. J. Epidemiol., 35, 765775.
  • Greenland, S. (2007), Bayesian perspectives for epidemiological research. II. Regression analysis, Int. J. Epidemiol., 36, 195202.
  • Holm, K., M. Bovis, and M. Jakob (2004), The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia, Geomorphology, 57, 201216.
  • Hosking, J. R. M., and J. R. Wallis (1987), Parameter and quantile estimation for the generalized pareto distribution, Technometrics, 29, 339349.
  • Jakob, M. (2012), The fallacy of frequency: Statistical techniques for debris-flow frequency-magnitude analyses, in Landslides and Engineered Slopes: Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, Canada, 3–8 June, edited by E. Eberhardt et al., pp. 741–750, Taylor & Francis Group, London.
  • Jin, M., and J. R. Stedinger (1989), Flood frequency analysis with regional and historical information, Water Resour. Res., 25, 925936.
  • Katz, R. W., M. B. Parlange, and P. Nabeau (2002), Statistics of extremes in hydrology, Adv. Water Resour., 25, 12871304.
  • Madsen, H., P. F. Rasmussen, and D. Rosbjerg (1997), Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events, Water Resour. Res., 33, 747757.
  • Martins, E. S., and J. R. Stedinger (2001), Generalized maximum likelihood Pareto-Poisson estimators for partial duration series, Water Resour. Res., 37, 25512557.
  • Ministry of Transportation and Infrastructure (2009), Subdivision Preliminary Layout Review—Natural Hazard Risk, Ministry of Transportation and Infrastructure, BC, Canada.
  • O'Connell, D. R. H., D. A. Ostenaa, D. R. Levish, and R. E. Klinger (2002), Bayesian flood frequency analysis with paleohydrologic bound data, Water Resour. Res., 38(5).
  • O'Hagan, A., C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J. Jenkinson, J. E. Oakley, and T. Rakow (2006), Uncertain Judgements: Eliciting Experts' Probabilities, John Wiley & Sons, West Sussex, England.
  • Pickands, J., III (1975), Statistical inference using extreme order statistics, Ann. Stat., 3, 119131.
  • R Core Team (2012), R: A Language and Environment for Statistical Computing, R Foundat. for Stat. Comput., Vienna, Austria. (Available at http://www.R-project.org/.).
  • Read, P. B. (1990), Mount Meager complex, Garibaldi Belt, southwestern British Columbia, Geosci. Can., 17, 167170.
  • Reiss, R.-D., and M. Thomas (2007), Statistical Analysis of Extreme Values With Applications to Insurance, Finance, Hydrology and Other Fields, 3rd ed., Birkhaeuser, Basel.
  • Renard, B., X. Sun, and M. Lang (2013), Bayesian methods for non-stationary extreme value analysis, in Extremes in a Changing Climate: Detection, Analysis and Uncertainty, edited by A. AghaKouchak et al., pp. 3995, Springer, New York.
  • Ribatet, M., E. Sauquet, J. M. Gresillon, and T.B. M. J. Ouarda (2006), A regional Bayesian POT model for flood frequency analysis, Stochastic Environ. Res. Risk Assess., 21, 327339.
  • Smith, R. L. (1984), Threshold methods for sample extremes, in Statistical Extremes and Applications, edited by J. T. de Oliveira, pp. 621638, D. Reidel, Dordrecht.
  • Smith, R. L. (1989), Extreme value analysis of environmental time series: An example based on ozone data (with discussion), Stat. Sci., 4, 367393.
  • Smith, R. L., and T. S. Shively (1995), Point process approach to modeling trends in tropospheric ozone based on exceedances of a high threshold, Atmos. Environ., 29, 34893499.
  • Stephenson, A., and M. Ribatet (2012), evdbayes: Bayesian Analysis in Extreme Value Theory, R package version 1.1-0. (Available at http://CRAN.R-project.org/package=evdbayes.).
  • Winkler, R. L. (1968), The consensus of subjective probability distributions, Manage. Sci., 15, 361375.