SEARCH

SEARCH BY CITATION

References

  • Adamowski, J. F. (2008), Peak daily water demand forecast modeling using artificial neural networks, J. Water Resour. Plann. Manage., 134(2), 119128.
  • Adamowski, J., and H. F.Chan (2011), A wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 2840.
  • Adamowski, J., and K.Sun (2010), Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390, 8591.
  • Adamowski, J., H.Fung Chan, S. O.Prasher, B.Ozga-Zielinski, and A.Sliusarieva (2012), Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada, Water Resour. Res., 48, W01528, doi:10.1029/2010WR009945.
  • Altunkaynak, A., M.Özger, and M.Cakmakci (2005), Water consumption prediction of Istanbul City by using fuzzy logic approach, Water Resour. Manage., 19, 641654.
  • Arhami, M., N.Kamali, M. M.Rajabi, (2013), Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations, Environ. Sci. Pollut. Res., 20(7), 47774789, doi:10.1007/s11356-012-1451-6.
  • Ascough, J. C., H. R.Maier, J. K.Ravalico, and M. W.Strudley (2008), Future research challenges for incorporation of uncertainty in environmental and ecological decision-making, Ecol. Modell., 219, 383399.
  • Aubertin, L., A.Aubin, G.Pelletier, D.Curodeau, M.Osseyrane, and P.Lavallée (2002), Identifying and prioritizing infrastructure rehabilitation, North Am. Soc. Trenchless Technol.
  • Babel, M. S., A.Gupta, and P.Pradhan (2007), A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal, Water Resour. Manage., 21, 573589.
  • Barreto, H., and F. M.Howland (2006), Introductory Econometrics: Using Monte Carlo Simulation with Microsoft Excel, Cambridge Univ. Press, Cambridge.
  • Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Clarendon Press, Oxford, U. K.
  • Caiado, J. (2010), Performance of combined double seasonal univariate time series models for forecasting water demand, J. Hydrol. Eng., 15(3), 215222.
  • Campolo, M., P.Andreussi, and A.Soldati (1999), River flood forecasting with a neural network model, Water Resour. Res., 35(4), 11911197.
  • Cannas, B., A.Fanni, L.See, and G.Sias (2006), Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning, Phys. Chem. Earth, 31, 11641171.
  • City of Montreal (2010), The Montreal Community Sustainable Development Plan 2010–2015, Ville de Montreal, Que.
  • Efron, B. (1979), Bootstrap methods: Another look at the jackknife, Ann. Stat., 7, 126.
  • Efron, B., and R. J.Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, London, U. K.
  • Environment Canada (2010), Available at http://www.climate.weatheroffice.gc.ca.
  • Firat, M., M. E.Turan, and M. A.Yurdusev (2009), Comparative analysis of fuzzy inference systems for water consumption time series prediction, J. Hydrol., 374, 235241.
  • Ghiassi, M., D. K.Zimbra, and H.Saidane (2008), Urban water demand forecasting with a dynamic artificial neural network model, J. Water Resour. Plann. Manage., 134(2), 138146.
  • Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall, Englewood Cliffs, N. J.
  • Heil, C. E., and D. F.Walnut (1989), Continuous and discrete wavelet transforms, SIAM Rev., 31(4), 628666.
  • Herrera, M., L.Torgo, J.Izquierdo, and R.Pérez-García (2010), Predictive models for forecasting hourlyurban water demand, J. Hydrol., 387, 141150.
  • Hinsbergen, C., P. I.van, J. W. C.vanLint, and H. J.vanJuylen (2009), Bayesian committee of neural networks to predict travel times with confidence intervals, Trans. Res. Part C, 17(5), 498509.
  • House-Peters, L. A., and H.Chang (2011), Urban water demand modeling: Review of concepts, methods, and organizing principles, Water Resour. Res., 47, W05401, doi:10.1029/2010WR009624.
  • Jain, A., and L. G.Ormsbee (2002), Short-term water demand forecast modeling techniques-conventional methods versus AI, AWWA J., 94(7), 6472.
  • Jain, A., and A. M.Kumar (2007), Hybrid neural network models for hydrologic time series forecasting, Appl. Soft Comput., 7, 585592.
  • Jia, Y., and T. B.Culver (2006), Bootstrapped artificial neural networks for synthetic flow generation with a small data sample, J. Hydrol., 331, 580590.
  • Kame'enui, A. (2003), Water demand forecasting in the Puget Sound Region: Short and long-term models, MS thesis, Dep. of Civil and Environ. Eng., Univ. of Washington, Seattle, Washington.
  • Kayaga, S., and I.Smout (2007), Water demand management: A key building block for integrated resource planning for the city of the future, First SWITCH Scientific Meeting, Univ. of Birmingham, U. K.
  • Khalil, A., M.McKee, M. W.Kemblowski, T.Asefa, and L.Bastidas (2005), Multiobjective analysis of chaotic dynamic systems with sparse learning machines, Adv. Water Resour., 29, 7288.
  • Kisi, O. (2010), Wavelet regression model for short-term streamflow forecasting, J. Hydrol., 389, 344353.
  • Leclerca, M., and T. B. M. J.Ouarda (2007), Non-stationary regional flood frequency analysis at ungauged sites, J. Hydrol., 343, 254265.
  • Lertpalangsunti, N., C. W.Chana, P.Mason, and P.Tontiwachwuthikul (1999), A toolset for construction of hybrid intelligent forecasting systems: Application for water demand prediction, Artif. Intell. Eng., 13, 2142.
  • Maier, H. R., and G. C.Dandy (2010), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Modell. Software, 15, 101124.
  • Maier, H. R., A.Jain, G. C.Dandy, and K. P.Sudheer (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Modell. Software, 25, 891909.
  • Mallat, S. G. (1989), A theory for multi resolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11(7), 674693.
  • Nourani, V., M.Komasi, and A.Mano (2009), A multivariate ANN-wavelet approach for rainfall–runoff modeling, Water Resour. Manage., 23(14), 28772894.
  • Rosso, O. A., A.Figliola, S.Blanco, and P. M.Jacovkis (2004), Signal separation with almost periodic components: A wavelets based method, Rev. Mex. Fisica, 50, 179186.
  • Sahoo, G. B., S. G.Schladow, and J. E.Reuter (2009), Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models, J. Hydrol., 378, 325342.
  • Sharma, S. K., and K. N.Tiwari (2009), Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment, J. Hydrol., 374, 209222.
  • Srinivasulu, S., and A.Jain (2009), River flow prediction using an integrated approach, J. Hydrol. Eng., 14, 7583.
  • Statistics Canada (2007), Available at http://www12.statcan.ca.
  • Sudheer, K. P., A. K.Gosain, and K. S.Ramasastri (2002), A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrol. Processes, 16(6), 13251330.
  • Tiwari, M. K., and C.Chatterjee (2009), Daily discharge forecasting using WANNs coupled with nonlinear bias correction techniques, IAHS-AISH Publ., 331, 98108.
  • Tiwari, M. K., and C.Chatterjee (2010a), Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs), J. Hydrol., 382, 2033.
  • Tiwari, M. K., and C.Chatterjee (2010b), Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach, J. Hydrol., 394, 458470.
  • Tiwari, M. K., and C.Chatterjee (2011) A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting, J. Hydroinf., 13(3), 500519.
  • Tiwari, M. K., K. Y.Song, C.Chatterjee, and M. M.Gupta (2013), Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps, J. Hydroinf., 15(2), 486502, doi: 10.2166/hydro.2012.130.
  • Twomey, J., and A.Smith (1998), Bias and variance of validation methods for function approximation neural networks under conditions of sparse data, IEEE Trans. Syst. Man Cybernet. Part C: Appl. Rev. 28(3), 417430.
  • Wu, C. L., K.W.Chau, and Y. S.Li (2009), Methods to improve neural network performance in daily flows prediction, J. Hydrol., 372, 8093.
  • Wu, C. L., K. W.Chau, and C.Fan (2010), Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques, J. Hydrol., 389, 146167.
  • Zhou, S. L., T. A.McMahon, A.Walton, and J.Lewis (2000), Forecasting daily urban water demand: A case study of Melbourne, J. Hydrol., 36(3), 153164.
  • Zhou, S. L., T. A.McMahon, A.Walton, and J.Lewis (2002), Forecasting operational demand for an urban water supply zone, J. Hydrol., 259, 189202.