SEARCH

SEARCH BY CITATION

References

  • Ajayi, A. E., N. van de Giesen, and P. Vlek (2008), A numerical model for simulating Hortonian overland flow on tropical hillslopes with vegetation elements, Hydrol. Processes, 22(8), 11071118.
  • Ben-Zvi, A. (1970), On the relationship between rainfall and surface runoff on laboratory watersheds, Ph.D. thesis, Univ. of Ill. at Urbana-Champaign, Urbana.
  • Black, P. E. (1972), Hydrograph responses to geomorphic model watershed characteristics and precipitation variables, J. Hydrol., 17(4), 309329.
  • Caviedes-Voullième, D., P. García-Navarro, and J. Murillo (2012), Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events, J. Hydrol., 448–449, 3959.
  • Costabile, P., C. Costanzo, and F. Macchione (2012a), Comparative analysis of overland flow models using finite volume schemes, J. Hydroinformatics, 14(1), 122135.
  • Costabile, P., C. Costanzo, and F. Macchione (2012b), A storm event watershed model for surface runoff based on 2D fully dynamic wave equations, Hydrol. Processes, 27(4), 554569.
  • de Lima, J. L. M. P., C. S. Souza, and V. P. Singh (2008), Granulometric characterization of sediments transported by surface runoff generated by moving storms, Nonlinear Processes Geophys., 15(6), 9991011.
  • de Lima, J. L. M. P., P. Tavares, V. P. Singh, and M. I. P. de Lima (2009), Investigating the nonlinear response of soil loss to storm direction using a circular soil flume, Geoderma, 152(1–2), 915.
  • de Lima, J. L. M. P., P. A. Dinis, C. S. Souza, M. I. P. de Lima, P. P. Cunha, J. M. Azevedo, V. P. Singh, and J. M. Abreu (2011), Patterns of grain-size temporal variation of sediment transported by overland flow associated with moving storms: Interpreting soil flume experiments, Nat. Hazards Earth Syst. Sci., 11(9), 26052615.
  • French, R. H. (1985), Open-channel Hydraulics, vol. xi, 705 pp., McGraw-Hill, New York.
  • Heng, B. C. P., G. C. Sander, and C. F. Scott (2009), Modeling overland flow and soil erosion on nonuniform hillslopes: A finite volume scheme, Water Resour. Res., 45, W05423, doi:10.1029/2008WR007502.
  • Heng, B. C. P., G. C. Sander, A. Armstrong, J. N. Quinton, J. H. Chandler, and C. F. Scott (2011), Modeling the dynamics of soil erosion and size-selective sediment transport over nonuniform topography in flume-scale experiments, Water Resour. Res., 47, W02513, doi:10.1029/2010WR009375.
  • Isidoro, J. M. G. P., J. L. M. P. de Lima, and J. Leandro (2012), Influence of wind-driven rain on the rainfall-runoff process for urban areas: Scale model of high-rise buildings, Urban Water J., 9(3), 199210.
  • Kim, D. H. (2009), Turbulent Flow and Transport Modeling by Long Waves and Currents, Texas A&M Univ., College Station, Tex.
  • Kim, D. H., and S. O. Lee (2012), Stable numerical model for transcritical flow and sediment transport on uneven bathymetry, J. Hydraul. Eng., 138(1), 4656.
  • Kim, D. H., Y. S. Cho, and H. J. Kim (2008), Well balanced scheme between flux and source terms for computation of shallow-water equations over irregular bathymetry, J. Eng. Mech., 134(4), 277290.
  • Lee, K. T., and J. K. Huang (2007), Effect of moving storms on attainment of equilibrium discharge, Hydrol. Processes, 21(24), 33573366.
  • Liang, J. (2010), Evaluation of runoff response to moving rainstorms, Ph.D. dissertation, Marquette Univ., Milwaukee, Wisconsin.
  • Lynett, P. J., J. A. Melby, and D. H. Kim (2010), An application of Boussinesq modeling to Hurricane wave overtopping and inundation, Ocean Eng., 37(1), 135153.
  • Maksimov, V. T. (1964), Computing runoff produced by a heavy rainstorm with a moving center, Sov. Hydrol., 5, 510513.
  • Marcus, N. (1968), A laboratory and analytical study of surface runoff under moving rainstorms, Ph.D. thesis, 108 pp., Dep. of Civil Eng., Univ. of Ill. at Urbana-Champaign, Urbana-Champaign, Illinois.
  • Nunes, J. P., J. L. M. P. de Lima, V. P. Singh, M. I. P. de Lima, and G. N. Vieira (2006), Numerical modeling of surface runoff and erosion due to moving rainstorms at the drainage basin scale, J. Hydrol., 330(3–4), 709720.
  • Ogden, F. L., J. R. Richardson, and P. Y. Julien (1995), Similarity in catchment response. 2: Moving rainstorms, Water Resour. Res., 31(6), 15431547.
  • Seo, Y., and A. R. Schmidt (2012), The effect of rainstorm movement on urban drainage network runoff hydrographs, Hydrol. Processes, 26(25), 38303841.
  • Shen, Y. Y., B. C. Yen, and V. T. Chow (1974), Experimental investigation of watershed surface runoff, Nat. Tech. Info. Serv. Iss. Number 7707, 215 pp., Dep. of Civil Eng., Univ. of Ill. at Urbana-Champaign, Urbana.
  • Singh, V. P. (1998), Effect of the direction of storm movement on planar flow, Hydrol. Processes, 12(1), 147170.
  • Toro, E. F. (2002), Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley, New York.
  • Yamamoto, S., and H. Daiguji (1993), Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations, Comput. Fluids, 22(2–3), 259270.
  • Yeh, G.-T., D.-S. Shih, and J.-R. C. Cheng (2011), An integrated media, integrated processes watershed model, Comput. Fluids, 45(1), 213.
  • Yen, B. C., and V. T. Chow (1968), A Study of Surface Runoff due to Moving Rainstorms, Dep. of Civil Eng., Univ. of Ill. at Urbana-Champaign, Urbana.
  • Yen, B. C., and V. T. Chow (1969), A laboratory study of surface runoff due to moving rainstorms, Water Resour. Res., 5(5), 9891006.
  • Yoon, T.-H. (2011), Applied Hydrology, Cheong Moon Gak, Seoul.