SEARCH

SEARCH BY CITATION

References

  • Barenblatt, G. I. (1952), On some unsteady fluid and gas motions in a porous medium, J. Appl. Math. Mech., 16(7), 752729.
  • Basha, H. A. (2013), Traveling wave solution of the Boussinesq equation for groundwater flow in horizontal aquifers, Water Resour. Res., 49, 16681679, doi:10.1002/wrcr.20168.
  • Bender, C. M., and S. A. Orszag (1978), Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, N. Y.
  • Blasius, H. (1908), The boundary layers in fluids with little friction, Z. Math. Phys., 56, 137.
  • Boussinesq, J. (1904), Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pures Appl., 10, 578, 5me Sér.
  • Boyd, J. P. (1999), The Blasius function in the complex plane, Exp. Math., 8(4), 381394.
  • Boyd, J. P. (2008), The Blasius function: Computations before computers, the value of tricks, undergraduate projects, and open research problems, SIAM Rev., 50(4), 791804.
  • Fazio, R. (2008), Transformation methods for the Blasius problem and its recent variants, in Proceedings of World Congress on Engineering 2008, vol. I–II, pp. 1–7, Int. Assoc. of Eng., Kwun Tong, Hong Kong.
  • Geroyannis, V. S., and F. N. Valvi (2012), A Runge-Kutta-Fehlberg code for the complex plane: Comparing with similar codes by applying to polytropic models, Int. J. Modern Phys. C, 23(5), 1250038, doi:10.1142/S0129183112500386.
  • Gradshteyn, I. S., and I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th ed., Elsevier, Amsterdam.
  • Greenberg, M. (1998), Advanced Engineering Mathematics, 2nd ed., Prentice Hall, Upper Saddle River, N. J.
  • Heaslet, M. A., and A. Alksne (1961), Diffusion from a fixed surface with a concentration-dependent coefficient, J. Soc. Ind. Appl. Math., 9(4), 584596, doi:10.1137/0109049.
  • Henrici, P. (1974), Applied and Computational Complex Analysis, vol. 1, John Wiley, New York.
  • Hogarth, W. L., and J. Y. Parlange (1999), Solving the Boussinesq equation using solutions of the Blasius equation, Water Resour. Res., 35(3), 885887.
  • Moutsopoulos, K. N. (2010), The analytical solution of the Boussinesq equation for flow induced by a step change of the water table elevation revisited, Transp. Porous Media, 85(3), 919940, doi:10.1007/s11242-010-9599-3.
  • Moutsopoulos, K. N. (2013), Solutions of the Boussinesq equation subject to a nonlinear Robin boundary condition, Water Resour. Res., 49, 718, doi:10.1029/2012WR012221.
  • Parlange, J. Y., R. D. Braddock, and G. Sander (1981), Analytical approximations to the solution of the Blasius equation, Acta Mech., 38(1–2), 119125, doi:10.1007/BF01351467.
  • Parlange, J. Y., W. L. Hogarth, R. S. Govindaraju, M. B. Parlange, and D. Lockington (2000), On an exact analytical solution of the Boussinesq equation, Transp. Porous Media, 39(3), 339345.
  • Polubarinova-Kochina, P. Y. (1962), Theory of Ground Water Movement, 507 pp., Princeton Univ. Press, Princeton, N. J.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes in C; The Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York.
  • Punnis, B. (1956), Zur differentialgleichung der plattengrenzschicht von Blasius, Arch. Math., 7, 165171.
  • Song, Z. Y., L. Li, and D. Lockington (2007), Note on Barenblatt power series solution to Boussinesq equation, Appl. Math. Mech. English Ed., 28(6), 823828.
  • Steenhuis, T. S., J.-Y. Parlange, W. E. Sanford, A. Heilig, F. Stagnitti, and M. F. Walter (1999), Can we distinguish Richards' and Boussinesq's equations for hillslopes?: The Coweeta experiment revisited, Water Resour. Res., 35(2), 589593.
  • Töpfer, K. (1912), Bemerkung zu dem aufsatz von H. Blasius: Grenzschichten in flüssigkeiten mit kleiner reibung, Z. Math. Phys., 60, 397398.
  • Verma, R. D., and W. Brutsaert (1971), Unsteady free surface ground water seepage, J. Hydraul. Div. Am. Soc. Civ. Eng., 97(8), 12131229.
  • Yeh, W. (1970), Nonsteady flow to surface reservoir, J. Hydraul. Div. Am. Soc. Civ. Eng., 96(3), 609618.