SEARCH

SEARCH BY CITATION

References

  • Aarnes, J., S. Krogstad, K. Lie, and J. Natvig (2006), Fast sequential implicit porous media flow simulations using multiscale finite elements and recording of cells for solution of nonlinear transport equation, paper presented at the 10th European Conference on the Mathematics of Oil Recovery, (ECMOR X) 4–7 September 2006, European Association of Geoscientists and Engineers (EAGE), Amsterdam, The Netherlands.
  • Aharon, M., M. Elad, and A. Bruckstein (2006), K-svd: An algorithm for designing over complete dictionaries for sparse representation, IEEE Trans. Signal Process., 54(11), 43114322.
  • Berre, I., M. Lien, and T. Mannseth (2007), A level-set corrector to an adaptive multiscale permeability prediction, Comput. Geosci., 11(1), 2742.
  • Bording, R. P., A. Gersztenkorn, L. R. Lines, J. A. Scales, and S. Treitel (1987), Applications of seismic travel-time tomography, Geophys. J. R. Astron. Soc., 90, 285303.
  • Britanak, P. C., P. Yip, and K. Rao (2006), Discrete Cosine Transform: General Properties, Fast Algorithms, and Integer Approximation, Academic, Boston.
  • Caers, J. (2003), History matching under training-image-based geological model constraints, SPE J., 8(3), 218226.
  • Candès, E. J., and T. Tao (2005), Decoding by linear programming, IEEE Trans. Inf. Theory, 51(12), 42034215.
  • Candès, E. J., J. Romberg, and T. Tao (2006), Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52(2), 489509.
  • Cardiff, M., and P. K. Kitanidis (2009), Bayesian inversion for facies detection: An extensible level set framework, Water Resour. Res., 45, W10416, doi:10.1029/2008WR007675.
  • Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem in hydrogeology, Hydrogeol. J., 13(1), 206222.
  • Dai, Z., and J. Samper (2004), Inverse problem of multicomponent reactive chemical transport in porous media: Formulation and applications, Water Resour. Res., 40, W07407, doi:10.1029/2004WR003248.
  • Dai, Z., R. Ritzi, and D. Dominic (2005), Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop analog studies, Water Resour. Res., 41, W07032, doi:10.1029/2004WR003515.
  • Dai, Z., E. Keating, C. Gable, D. Levitt, J. Heikoop, and A. Simmons (2010), Stepwise inversion of a groundwater flow model with multi-scale observation data, Hydrogeol. J., 18(3), 607624.
  • Donoho, D. (2006), Compressed sensing, IEEE Trans. Inf. Theory, 52(4), 12891306.
  • Dorn, O., and R. Villegas (2008), History matching of petroleum reservoirs using a level set technique, Inverse Probl., 24, 035015, doi: 10.1088/0266-5611/24/3/035015.
  • Elad, M. (2010), Sparse and Redundant Representations, From Theory to Applications in Signal and Image Processing, Springer, New York.
  • Engan, K., S. O. Aase, and J. H. Husøy (2000), Multi-frame compression: Theory and design, Signal Process., 80(10), 21212140.
  • Galli, A., H. Beucher, G. L. Loch, and B. Doligez (1994), The pros and cons of the truncated Gaussian method, in Geostatistical Simulations, edited by M. Armstrong and P. A. Dowd, pp. 217233, Kluwer Acad., Dordrecht, Netherlands.
  • Harp, D., Z. Dai, A. Wolfsberg, J. Vrugt, B. Robinson, and V. Vesselinov (2008), Aquifer structure identification using stochastic inversion, Geophys. Res. Lett., 35, L08404, doi:10.1029/2008GL033585.
  • Jacquard, P. (1965), Permeability distribution from field pressure data, Soc. Petrol. Eng. J., 5(4), 281294.
  • Jafarpour, B., and D. B. McLaughlin (2009), Reservoir characterization with discrete cosine transform. Part 1: Parameterization. Part 2: History matching, Soc. Petrol. Eng. J., 14(1), 182201.
  • Kaipio, J., and E. Somersalo (2007), Statistical inverse problems: Discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198(2), 493504.
  • Khaninezhad, M. M., B. Jafarpour, and L. Li (2012), Sparse geologic dictionaries for subsurface flow model calibration. Part I: Inversion formulation, Adv. Water Resour., 39, 106121.
  • Kitanidis, P. K. (2012), Generalized priors in Bayesian inversion problems, Adv. Water Resour., 36, 310.
  • Li, L., and B. Jafarpour (2010), Effective solution of nonlinear subsurface flow inverse problems in sparse bases, Inverse Probl., 26(10), 105016.
  • Mairal, J., F. Bach, J. Ponce, and G. Sapiro (2010), Online learning for matrix factorization and sparse coding, J. Mach. Learning Res., 11, 1960.
  • Mallat, S. (2009), A Wavelet Tour of Signal Processing: A Sparse Way, 3rd ed., Academic, Burlington, Vermont.
  • McLaughlin, D., and L. R. Townley (1996), A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 11311161.
  • Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif.
  • Oliver, D. S., and Y. Chen (2011), Recent progress on reservoir history matching: A review, Comput. Geosci., 15(1), 185221.
  • Parker, R. (1994), Geophysical Inverse Theory, Princeton Univ. Press, Princeton, N. J.
  • Remy, N., A. Boucher, and J. Wu (2009), Applied Geostatistics with SGeMS: A User's Guide, Cambridge Univ. Press, Cambridge, U. K.
  • Ronayne, M. J., S. M. Gorelick, and J. Caers (2008), Identifying discrete geologic structures that produce anomalous hydraulic response: An inverse modeling approach, Water Resour. Res., 44, W08426, doi:10.1029/2007WR006635.
  • Rubinstein, R., M. Zibulevsky, and M. Elad (2008), Efficient implementation of the K-Svd algorithm using batch orthogonal matching pursuit, Tech. Rep. CS-2008-08, Comp. Sci. Dep., Technion, Haifa, Israel.
  • Strebelle, S. (2002), Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34(1), 121.
  • Tarantola, A. (2005a), Inverse Problem Theory and Methods for Model Parameter Estimation, Soc. for Ind. and Appl. Math., Philadelphia, Penn.
  • Tarantola, A. (2005b), Inverse Problem Theory and Methods for Model Parameter Estimating, Soc. for Ind. and Appl. Math., Philadelphia, Penn.
  • Tikhonov, A. N., and V. I. Arsenin (1977), Solutions of Ill-Posed Problems, Scripta Ser. in Math., Halsted Press, Winston, Washington, D. C.
  • Tošić, I., and P. Frossard (2011), Dictionary learning, IEEE Signal Process. Mag., 28(2), 2738.
  • Tsai, F. T. C., N. Z. Sun, and W. W. G. Yeh (2003), Global-local optimization for parameter structure identification in three-dimensional groundwater modeling, Water Resour. Res., 39(2), 1043, doi:10.1029/2001WR001135.
  • Ye, M., and R. Khaleel (2008), A Markov chain model for characterizing medium heterogeneity and sediment layering structure, Water Resour. Res., 44, W09427, doi:10.1029/2008WR006924.
  • Yeh, W. W. G. (1986), Review of parameter-identification procedures in groundwater hydrology the inverse problem, Water Resour. Res., 22(2), 95108.
  • Yeh, W. W. G., and Y. S. Yoon (1981), Aquifer parameter-identification with optimum dimension in parameterization, Water Resour. Res., 17(3), 664672.