SEARCH

SEARCH BY CITATION

References

  • Aharoni A, Gaidukov L, Khersonsky O, et al. 2005. The ‘evolvability’ of promiscuous protein functions. Nat Genet 37: 7376.
  • Ausubel FM, Brent R, Kingston RE, et al. (eds). 1989. Current Protocols in Molecular Biology. Wiley: New York.
  • Boeke JD, LaCroute F, Fink GR. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: 345346.
  • Brachmann CB, Davies A, Cost GJ, et al. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115132.
  • Brewer JM, Weber G. 1968. The reversible dissociation of yeast enolase. Proc Natl Acad Sci USA 59: 216223.
  • Brindle PK, Holland JP, Willett CE, et al. 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol Cell Biol 10: 48724885.
  • Brown CA, Murray AW, Verstrepan KJ. 2010. Rapid expansion and functional divergence of subtelomeric gene families in yeast. Curr Biol 20: 895903.
  • Chai G, Brewer JM, Lovelace LL, et al. 2004. Expression, purification and the 1.8 Å resolution crystal structure of human neuron-specific enolase. J Mol Biol 341: 10151021.
  • Chen SH, Giblett ER. 1976. Enolase: human tissue distribution and evidence for three different loci. Ann Hum Genet 39: 277280.
  • Chin CCQ, Brewer JM, Wold F. 1981. The amino acid sequence of yeast enolase. J Biol Chem 256: 13771384.
  • Choi ID, Jeong MY, Ham MS, et al. 2008. Novel Ree1 regulates the expression of ENO1 via the Snf1 complex pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun 377: 395399.
  • Cohen R, Holland JP, Yokoi T, et al. 1986. Identification of a regulatory region that mediates glucose-dependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol Cell Biol 6: 22872297.
  • Cohen R, Yokoi T, Holland JP, et al. 1987. Transcription of the constitutively expressed yeast enolase gene ENO1 is mediated by positive and negative cis-acting regulatory sequences. Mol Cell Biol 7: 27532761.
  • Costanzo M, Baryshnikova A, Myers CL, et al. 2010. Charting the genetic interaction map of a cell. Curr Opin Biotechnol 22: 6674.
  • Costenoble R, Picotti P, Reiter L, et al. 2011. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol 7: 464488.
  • Cuthbertson RA, Tomarev SI, Piatigorsky J. 1992. Taxon-specific recruitment of enzymes as major soluble proteins in the corneal epithelium of three mammals, chicken, and squid. Proc Natl Acad Sci USA 89: 40044008.
  • Das S, Shevade S, LaCount DJ, et al. 2011. Plasmodium falciparum enolase complements yeast enolase functions and associates with the parasite food vacuole. Mol Biochem Parasitol 179: 817.
  • da Silva Giotto MT, Hannaert V, Vertommen D, et al. 2003. The crystal structure of Trypanosoma brucei enolase: visualization of the inhibitory metal binding site III and potential as target for selective, irreversible inhibition. J Mol Biol 331: 653665.
  • Decker BL, Wickner WT. 2006. Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem 281: 1452314528.
  • Deutscher D, Meilijson I, Kupiec M, et al. 2006. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38: 993998.
  • Dujon B, Sherman D, Fischer G, et al. 2004. Genome evolution in yeasts. Nature 430: 3544.
  • Duquerroy S, Camus C, Janin J. 1995. X-ray structure and catalytic mechanism of lobster enolase. Biochemistry 34: 1251312523.
  • Entelis N, Brandina I, Kamenski P, et al. 2006. A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 20: 16091620.
  • Fabre E, Muller H, Therizols P, et al. 2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol Biol Evol 22: 856873.
  • Faller LD, Baroudy BM, Johnson AM, et al. 1977. Magnesium ion requirements for yeast enolase activity. Biochemistry 16: 38643869.
  • Fasolo J, Sboner A, Sun MG, et al. 2011. Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev 25: 767778.
  • Goffeau A, Barrell BG, Bussey H, et al. 1996. Life with 6000 genes. Science 274: 546567.
  • Hafner A, Obermajer N, Kos J. 2012. γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem J 443: 439450.
  • Holland JP, Brindle PK, Holland MJ. 1990. Sequences within an upstream activation site in the yeast enolase gene ENO2 modulate repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1. Mol Cell Biol 10: 48634871.
  • Huie MA, Scott EW, Drazinic CM. 1992. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol Cell Biol 12: 26902700.
  • Ideker T, Thorsson V, Ranish JA, et al., 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929934.
  • Kang HJ, Jung S-K, Kim SJ, et al. 2008. Structure of human α-enolase (hENO1), a multifunctional glycolytic enzyme. Acta Cryst D64: 651657.
  • Kathiresan T, Krishnan K, Krishnakumar V, et al. 2006. Triose phosphate isomerase, a novel enzyme-crystallin, and τ-crystallin in crocodile cornea. High accumulation of both proteins during late embryonic development. FEBS J 273: 33703380.
  • Kellis M, Patterson N, Endrizzi M, et al. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241254.
  • Kornblatt MJ. 2005. Changing the metal ion selectivity of rabbit muscle enolase by mutagenesis: effects of the G37A and G41A mutations. Biochim Biophys Acta 1748: 2025.
  • Kornblatt MJ, Kornblatt JA, Hancock MA. 2011. The interaction of canine plasminogen with Streptococcus pyogenes enolase: they bind to one another but what is the nature of the structures involved? PLoS One 6: e28481.
  • Kűhnel K, Luisi BF. 2001. Crystal structure of the Escherichia coli RNA degradosome component enolase. J Mol Biol 313: 583592.
  • Lai LC, Kissinger MT, Burke PV, et al. 2008. Comparison of the transcriptomic ‘stress response’ evoked by antimycin A and oxygen deprivation in Saccharomyces cerevisiae. BMC Genom 9: 627640.
  • Larsen TM, Wedekind JE, Rayment I, et al. 1996. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution. Biochemistry 35: 43394358.
  • Lipson D, Raz T, Kieu A, et al. 2009. Quantification of the yeast transcriptome by single-molecule sequencing. Nat Biotechnol 27: 652658.
  • Liti G, Carter DM, Moses AM, et al., 2009. Population genomics of domestic and wild yeasts. Nature 458: 337341.
  • Liu H, Zhang Y, Yang W. 2000. How is the active site of enolase organized to catalyze two different reaction steps? J Am Chem Soc 122: 65606570.
  • Louis EJ. 2007. Making the most of redundancy. Nature 449: 673674.
  • McAlister L, Holland MJ. 1982. Targeted deletion of a yeast enolase structural gene. J Biol Chem 257: 71817188.
  • Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119122.
  • Ni L, Bruce C, Hart C, et al. 2009. Dynamic and complex transcription factor binding during an inducible response in yeast. Genes Dev 23: 13511363.
  • Ohno S. 1970. Evolution by Gene Duplication. Springer-Verlag: New York.
  • Pal-Bhowmick I, Vora HK, Jarori GK. 2007. Subcellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malar J 6: 4551.
  • Pearce JM, Edwards YH, Harris H. 1976. Human enolase isozymes: electrophoretic and biochemical evidence for three loci. Ann Hum Genet 39: 263276.
  • Poyner RR, Laughlin LT, Sowa GA, et al. 1996. Toward identification of acid/base catalysts in the active site of enolase: comparison of the properties of K345A, E168Q, and E211Q variants. Biochemistry 35: 16921699.
  • Pryde FE, Huckle TC, Louis EJ. 1995. Sequence analysis of the right end of chromosome XV in Saccharomyces cerevisiae: an insight into the structural and functional significance of sub-telomeric repeat sequences. Yeast 11: 371382.
  • Ptacek J, Devgan G, Michaud G, et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438: 679684.
  • Renigunta A, Mutig K, Rottermann K, et al. 2011. The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function. Cell Physiol Biochem 28: 663672.
  • Rider CC, Taylor CB. 1974. Enolase isoenzymes in rat tissues. Electrophoretic, chromatographic, immunological and kinetic properties. Biochim Biophys Acta 365: 285300.
  • Sharifpoor S, van Dyk D, Costanzo M, et al. 2012. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22: 791801.
  • Sherman F. 1991. Getting started with yeast. Meth Enzymol 194: 321.
  • Sikorski RS, Heiter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 1927.
  • Sims PA, Reed GH. 2005. Method for the enzymatic synthesis of 2-phospho- d-glycerate from adenosine 5′-triphosphate and d-glycerate via d-glycerate-2-kinase. J Mol Catal B: Enzym 32: 7781.
  • Stec B, Lebioda L. 1990. Refined structure of yeast apo-enolase at 2.25 Å resolution. J Mol Biol 211: 235248.
  • Subramanian A, Miller DM. 2000. Structural analysis of α-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275: 59585965.
  • Swofford DL. 2001. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), v 4 [computer program]. Sinauer Associates: Sunderland, MA, USA.
  • Tarassov K, Messier V, Landry CR et al. 2008. An in vivo map of the yeast protein interactome. Science 320: 14651470.
  • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTALW — improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • Torres EM, Sokolsky T, Tucker CM, et al. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317: 916924.
  • Uemura H, Shiba T, Paterson M, et al. 1986. Identification of a sequence containing the positive regulatory region of Saccharomyces cerevisiae gene ENO1. Gene 45: 6775.
  • Uemura H, Shiba T, Machida M, et al. 1987. A positive regulatory sequence of the Saccharomyces cerevisiae ENO1 gene. J Biochem 102: 181189.
  • Wedekind JE, Pyner RR, Reed GH, et al. 1994. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1 Å resolution. Biochemistry 33: 93339342.
  • Wedekind JE, Reed GH, Rayment I. 1995. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII-enzyme complex from yeast at 1.9 Å resolution. Biochemistry 34: 43254330.
  • Wellinger RJ, Zakian VA. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 10731105.
  • Westhead EW, McLain G. 1964. A purification of brewers' and bakers' yeast enolase yielding a single active component. J Biol Chem 239: 24642468.
  • Wistow GJ, Lietman T, Williams LA, et al. 1988. τ-Crystallin/α-enolase: one gene encodes both an enzyme and a lens structural protein. J Cell Biol 107: 27292736.
  • Wolfe KH, Shields DC. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708713.
  • Zhang E, Hatada M, Brewer JM, et al. 1994. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4 Å resolution. Biochemistry 33: 62956300.
  • Zhao S, Choy BSF, Kornblatt MJ. 2008. Effects of the G376E and G157D mutations on the stability of yeast enolase – a model for human muscle enolase deficiency. FEBS J 275: 97106.