SEARCH

SEARCH BY CITATION

References

  • Aguilar-Uscanga, MG, Delia ML, Strehaiano P. 2003. Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. Appl Microbiol Biotechnol 61: 157162.
  • Amorim HV, Lopes ML, Oliveira JVC, Buckeridge MS, Goldman GH. 2011. Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91: 12671275.
  • Arvik T, Henick-Kling T. 2002. Brettanomyces bruxellensis occurrence, growth, and effect on wine flavor. Prac Winery Vin 24: 4856.
  • Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira, M, Loureiro V. 2008. Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121: 201207.
  • Basilio ACM, Araujo PRL, Morais JOF, Silva-Filho EA, Morais MA Jr, Simões DA. 2008. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56: 322326.
  • Basso LC, Amorim HV, Oliveira AJ, Lopes ML. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8: 11551163.
  • Beckner M, Ivey ML, Phister TG. 2011. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53: 387394.
  • Blomqvist J, Ebehard T, Schnurer J, Passoth V. 2010. Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87: 14871497.
  • Blomqvist J, Nogué VS, Gorwa-Grauslund M, Passoth V. 2012. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast 29: 265274.
  • Conterno L, Joseph CML, Arvik TJ, Henick-Kling T, Bisson LF. 2006. Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wines. Am J Enol Vitic 57: 139147.
  • Dias L, Dias S, Sancho T, et al. 2003. Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiol 20: 567574.
  • du Toit WJ, Pretorius IS. 2000. Microbial spoilage and preservation of wine: using weapons from nature's own arsenal – a review. S Afr J Enol Vitic 21: 7496.
  • Galafassi S, Merico A, Pizza F, et al. 2011. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38: 10791088.
  • Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C. 2013. Utilization of nitrate abolishes the ‘Custers effect’ in Dekkera bruxellensis and determines a different pattern of fermentation products. J Ind Microbiol Biotechnol 40: 297303.
  • Hellborg L, Piskur J. 2009. Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis. Euk Cell 8: 17391749.
  • Heresztyn T. 1986. Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146: 9698.
  • Jolly NP, Augustyn OPH, Pretorius IS. 2006. The role and use of non-Saccharomyces yeasts in wine production. S Afr J Enol Vitic 27: 1539.
  • Leite FCB, Basso TO, Pita WB, Gombert AK, Simões DA, Morais MA Jr. 2012. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 13: 3443.
  • Pereira LF, Bassi APG, Avansini SH, et al. 2012. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 101: 529539.
  • Piskur J, Ling Z, Marcet-Houben M, et al. 2012. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157: 202209.
  • Pita WB, Leite FCB, Liberal ATS, Simões DA, Morais MA Jr. 2011. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. Antonie Van Leeuwenhoek 100: 99107.
  • Renouf V, Falcou M, Miot-Sertier C, Perello MC, de Revel G, Lonvaud-Funel A. 2006. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100: 12081219.
  • Renouf V, Miot-Sertier C, Perello MC, de Revel G, Lonvaud-Funel A. 2009. Evidence for differences between B. bruxellensis strains originating from an enological environment. Int J Wine Res 1: 95100.
  • Rozpedowska E, Hellborg L, Ishchuk OP, et al. 2011. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts. Nature Comm 2:302.
  • Silva P, Cardoso H, Gerós H. 2004. Studies on the wine spoilage capacity of Brettanomyces/Dekkera spp. Am J Enol Vitic 55: 6572.
  • Souza-Liberal AT, Silva-Filho EA, Morais JOF, Simões DA, Morais MA Jr. 2005. Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR. Lett Appl Microbiol 40: 1923.
  • Souza-Liberal AT, Basilio ACM, Resende AM, et al. 2007. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102: 538547.
  • van Dijken JP, Scheffers WA. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32: 199204.
  • Vigentini I, Romano A, Compagno Cet al. 2008. Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. FEMS Yeast Res 8: 10871096.
  • Wedral D, Shewfelt R, Frank J. 2010. The challenge of Brettanomyces in wine. LWT – Food Sci Technol 43: 14741479.
  • White TJ, Bruns T, Lee S, Taylor J. 1994. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Application, Innis M, Gelfand DH, Sninsky JJ, White TJ (eds). Academic Press: New York; 315321.
  • Wijsman MR, van Dijken JP, van Kleeff BH, Scheffers WA. 1984. Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect). Antonie Van Leeuwenhoek 50: 183192.