• Catalyst synthesis;
  • Heterogeneous catalysis;
  • Methanol synthesis;
  • Copper;
  • Zinc


In this research report we summarize recent progress that has been made in the field of Cu/ZnO catalyst synthesis. We briefly introduce the fields of application of this catalyst: methanol synthesis, the water gas shift reaction, and methanol steam reforming. The review is focused on the well-documented industrial synthesis protocol and on the early stages of catalyst synthesis. The setting of the most critical synthesis parameters during co-precipitation and ageing, like pH and temperature, is discussed in detail. We show how these parameters effect the phase formation and identify zincian malachite, (Cu, Zn)2(OH)2CO3, as the relevant precursor phase for high-performance catalysts. A special emphasis is placed on the solid state chemistry of this precursor phase, in particular on the structural effects of Cu, Zn substitution. Based on the structural analysis, it is shown that the industrial synthesis recipe was empirically optimized to maximize the zinc incorporation into zincian malachite. From this insight a simple and generic geometric concept for the synthesis of nanostructured composite catalysts based on de-mixing of solid solution precursors is derived. With this concept, the complex multi-step industrial synthesis can be rationalized and the so-called “chemical memory” of this catalyst synthesis can be understood. We also demonstrate how application of this concept can lead to new interesting catalytic materials, which help to address fundamental questions of this catalyst system like to role of the Al2O3 promoter or the so-called Cu-Zn synergy.