Get access

Half Antiperovskites VI: On the Substitution Effects in Shandites InxSn2–xCo3S2


  • Dedicated to Professor Wolfgang Bensch on the Occasion of His 60th Birthday

  • Supporting Information for this article is available on the WWW under or from the author.


In the shandite type solid solution InxSn2–xCo3S2 the transition from half metal ferromagnetic Sn2Co3S2 to the new thermoelectric InSnCo3S2 is related to A = In, Sn on different crystallographic sites. Effects and origin of crystal and electronic structure changes induced by A = In are now investigated within the solid solution 0 ≤ x ≤ 2 including In2Co3S2. Effects are studied from X-ray data, 119Sn Mößbauer spectroscopy, and ab initio calculations. Their origin is explored by DFT modeling on site preference of In and Sn in a supercell, electric field gradients (EFG), spin polarization, band structures, and direct space analyses (ELF, AIM). Indium is found to cause the crystal structure distortion on one A site, the electronic structure distortion to the other, as a consequence of inverted anisotropic bonding.