SEARCH

SEARCH BY CITATION

References

  • [1]
    R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).
  • [2]
    H. Altenbach, J. Altenbach, and K. Naumenko, Ebene Flächentragwerke: Grundlagen der Modellierung und Berechnung von Scheiben und Platten (Springer, Berlin, Heidelberg, 1998).
  • [3]
    J. Altenbach, H. Altenbach, and V.A. Eremeyev, On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Arch. Appl. Mech. 80, 7392 (2010).
  • [4]
    S.A. Ambartsumyan, Theory of Anisotropic Plates, in: Progress in Material Science Series, Vol. 2. (Technomic Publishing, Stamford, 1970).
  • [5]
    D.K. Bose, Erhaltungssätze der Kontinuumsmechanik für eine konsistente Plattentheorie, PhD thesis (Universität Bremen, Bremen, 2004).
  • [6]
    D.K. Bose and R. Kienzler, On material conservation laws for a consistent plate theory, Arch. Appl. Mech. 75, 607617 (2006).
  • [7]
    M. Haimovici, On the bending of elastic plates, Bull. Acad. Polon. Sci. 14, 10471057 (1966).
  • [8]
    M.T. Huber, Probleme der Statik technisch wichtiger orthotroper Platten (Gebethner & Wolff, Warsaw, 1929).
  • [9]
    M.T. Huber, Some application of the theory of bending of orthotropic plates, Z. Angew. Math. Mech. 6(3), 228231 (1926).
  • [10]
    M.T. Huber, Theory of Plates (Tow. Naukowe, L'vow, 1921).
  • [11]
    I.Yu. Khoma, General solution of equilibrium equations for the deflection of plates and shells of constant thickness, Sov. Phys. Dokl. 18, 756758 (1974).
  • [12]
    R. Kienzler, On consistent plate theories, Arch. Appl. Mech. 72, 229247 (2002).
  • [13]
    R. Kienzler, On Consistent Second-order Plate Theories, in: Theories of Plates and Shells: Critical Review and New Applications (Springer-Verlag, Berlin, Heidelberg, New York, 2004), pp. 85–96.
  • [14]
    R. Kienzler and R. Schröder, Einführung in die höhere Festigkeitslehre (Springer, Berlin, Heidelberg, New York, 2009).
  • [15]
    G.R. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math. 39, 5188 (1850).
  • [16]
    W.T. Koiter, On the Mathematical Foundation of Shell Theory, in: Proc. Int. Congr. Math. Vol. 3, (Gouthier Villars, Paris, 1971), pp. 123–130.
  • [17]
    W.B. Krätzig, On the Structure of Consistent Linear Shell Theories, in: Proc. 3rd IUTAM Symp. on Shell Theory (North-Holland, Amsterdam, 1980), pp. 353–368.
  • [18]
    S.G. Lekhnitskii, Anisotropic Plates (Gordon and Breach, New York, 1968).
  • [19]
    R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. 18, 3138 (1951).
  • [20]
    P.M. Naghdi, Foundations of Elastic Shell Theory, Progress in Solid Mechanics, Vol. 4 (North-Holland, Amsterdam, 1963).
  • [21]
    V.V. Poniatovskii, Theory of plates of medium thickness, P.M.M. 26, 335341 (1961).
  • [22]
    E. Reissner, On the theory of bending of elastic plates, J. Math. Phys. 23, 184191 (1944).
  • [23]
    E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12, 6977 (1945).
  • [24]
    P. Schneider, Eine konsistente Plattentheorie zweiter Ordnung für monotropes Material, diploma thesis (Universität Bremen, Bremen, 2010).
  • [25]
    A.I. Soler, Higher-order theories for structural analysis using Legendre polynomial expansions, J. Appl. Mech. 36, 757762 (1969).
  • [26]
    T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, Vol. 45 (Oxford University Press, Oxford, 1996).
  • [27]
    I.N. Vekua, On one method of calculating prismatic shells (in Russian), Trudy Tbilis. Mat. Inst. 21, 191259 (1955).
  • [28]
    K. Washizu, Variational Methods in Elasticity and Plasticity, 3. edition (Pergamon Press, Oxford, 1982).
  • [29]
    D. Werner, Funktionalanalysis, 6. edition (Springer, Berlin, Heidelberg, New York, 2007).
  • [30]
    E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/A: Linear Monotone Operators (Springer, Berlin, Heidelberg, New York, 1990).
  • [31]
    E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II/B: Linear Monotone Operators (Springer, Berlin, Heidelberg, New York, 1990).
  • [32]
    E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IV: Applications to Mathematical Physics, 2. edition (Springer-Verlag, Berlin, Heidelberg, New York, 1997).
  • [33]
    V.S. Zhgenti, A.F. Gyuntner, T.V. Meunargiya, and F.G. Tskhadaya, Solution of Problems of the Theory of Plates and Shells by I. N. Vekua’s Method, in: Proc. 3rd IUTAM Symp. on Shell Theory, (North-Holland, Amsterdam, 1980), pp. 669–684.
  • [34]
    P.A. Zhilin, On the Poisson and Kirchhoff plate theories from the point of view of the modern plate theory (in Russian), Izv. Akad. Nauk Rossii 3, 4864 (1992).