SEARCH

SEARCH BY CITATION

References

  • [1]
    P. Schaefer, M. Gampert, J.H. Goebbert, M. Gauding, and N. Peters, Asymptotic analysis of homogeneous isotropic decaying turbulence with unknown initial conditions, to be published in Journal of Turbulence (2011).
  • [2]
    C.H. Gibson, Fine structure of scalar fields mixed by turbulence i. Zero gradient points and minimal gradient surfaces, Phys. Fluids 11, 23052315 (1968).
  • [3]
    A.A. Wray and J.C.R. Hunt, Algorithms for Classification of Turbulent Structures, in: Topological Fluid Mechanics, edited by H. K. Moffat and A. Tsinober (Cambridge University Press, Cambridge, 1990) pp. 95–104.
  • [4]
    A. Tsinober, An Informal Introduction to Turbulence (Kluwer Academic Publishers, Dordrecht, 2001).
  • [5]
    T. Miyauchi and M. Tanahashi, Coherent Fine Scale Structure in Turbulence, IUTAM Sym. on Geometry and Statisties of Turbulence, edited by T. Kambe et al. (Kluwer Academic Publishers, Dordrecht, 2001) pp. 67–75.
  • [6]
    J. Jimenez and A.A. Wray, On the characteristics of vortex filaments in isotropic turbulence, J. Fluid Mech. 373, 255285 (1998).
  • [7]
    J. Davila and J.C. Vassilicos, Richardson's pair diffusion on the stagnation point structure of turbulence, Phys. Rev. Lett. 91(14), 144501 (2003).
  • [8]
    S. Goto and J.C. Vassilicos, The dissipation rate coefficient is not universal and depends on the internal stagnation point structure, Phys. Fluids 21, 035104 (2009).
  • [9]
    L. Wang and N. Peters, The length scale distribution function of the distance between extremal points in passive scalar turbulence, J. Fluid Mech. 554, 457475 (2006).
  • [10]
    L. Wang and N. Peters, Length scale distribution functions and conditional means for various fields in turbulence, J. Fluid Mech. 608, 113138 (2008).
  • [11]
    P. Schaefer, M. Gampert, J.H. Goebbert, L. Wang, and N. Peters, Testing of different model equations for the mean dissipation using Kolmogorov flows, Flow, Turbul. Combust. 85, 225243 (2010).
  • [12]
    N. Peters, Multiscale combustion and turbulence, 32nd Symposium on Combustion, Montreal 2008, Proc. Combust. Inst. 32, 125 (2009).
  • [13]
    P. Schaefer, M. Gampert, L. Wang, and N. Peters, Fast and Slow Changes of the Length of Gradient Trajectories in Homogenous Shear Turbulence, in: Advances in Turbulence XII, edited by B. Eckhardt (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 2009) pp. 565–572.
  • [14]
    P. Schaefer, M. Gampert, M. Gauding, N. Peters, and C. Trevino, The secondary splitting of zero-gradient points in a scalar field, J. Eng. Math. (2011), DOI 10.1007/s10665-011-9452-x.
  • [15]
    L. Wang, Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence, Phys. Rev. E 79, 046325 (2009).
  • [16]
    L. Wang and N. Peters, The mean velocity increment conditioned on gradient trajectories of various scalar variables in turbulence, Phys. Scr. Vol. T 142, 014004 (2010).
  • [17]
    M. Gampert, J.H. Goebbert, P. Schaefer, M. Gauding, N. Peters, F. Aldudak, and M. Oberlack, Extensive strain along gradient trajectories in the turbulent kinetic energy field, New J. Phys. 13, 043012 (2011).
  • [18]
    W.T. Ashurst, A.R. Kerstein, R.M. Kerr, and C.H. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids 30, 23432353 (1987).