SEARCH

SEARCH BY CITATION

References

  • [1]
    Abaqus 6.10 Analysis User's Manual (https://www.sharcnet.ca/Software/Abaqus610/Documentation/docs/v6.10/books/usb/default.htm, 2011).
  • [2]
    M.R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, Methods to Measure Material Viscoelactic Properties Using Sharp, Flat and Buckling Tips Inside ESEM, in: 8th IEEE Conference on Nanotechnology, (IEEE Xplore, New York, 2008), pp. 857–860.
  • [3]
    K. Balasundaram, Y.P. Cao, and D. Raabe, Identifying the Limitation of Oliver and Pharr Method in Characterizing the Viscoelastic-Plastic Materials with Respect to Indenter Geometry, in: Nano- and Microscale Properties and Behavior under Extreme Environments, edited by A. Misra, T. J. Balk, H. Huang, M. J. Caturla, and C. Eberl, Mater. Res. Soc. Symp. Proc. Vol. 1137E, 1137-EE10-23 (Warrendale, PA, 2009).
  • [4]
    H.G. Beyer, The Theory of Evolution Strategy (Springer, Berlin, Heidelberg, 2001).
  • [5]
    B.J. Briscoe, L. Fiori, and E. Pelillo, Nano-indentation of polymeric surfaces, J. Phys. D, Appl. Phys. 31, 23952404 (1998).
  • [6]
    Y.P. Cao, D.C. Ma, and D. Raabe, The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate, Acta Biomaterialia 5, 240248 (2009).
  • [7]
    Z. Chen and S. Diebels, Nanoindentation of hyperelastic polymer layers at finite deformation and parameter re-identification, Arch. Appl. Mech. DOI 10.1007/s00419-012-0613-9, pp. 1–16 (2011).
  • [8]
    Z. Chen, S. Diebels, and J. Schmitt, Frictional Nanoindentation of Hyperelastic Polymer Layers: A Numerical Study, Proceedings of the 3rd ECCOMAS Thematic Conference on the Mechanical Response of Composites (Leibniz Universität Hannover, Institut of Structural Anlaysis, Hannover, Germany, 2011), pp. 229–236
  • [9]
    L. Cheng, X. Xia, L.E. Scriven, and W.W. Gerberich, Spherical-tip indentation of viscoelastic material, Mech. Mater. 37, 213226 (2005).
  • [10]
    L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich, Flat-punch indentation of viscoelastic material, J. Polym. Sci. B, Polym. Phys. 38, 1022 (2000).
  • [11]
    Y.T. Cheng and C.M. Cheng, Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids, J. Mater. Res. 20, 10461054 (2005).
  • [12]
    Y.T. Cheng and C.M. Cheng, Relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters, Struct. Control Health Monit. 13, 561569 (2006).
  • [13]
    T. Chudoba and F. Richter, Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surf. Coat. Technol. 148, 191198 (2001).
  • [14]
    B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal. 42, 167178 (1963).
  • [15]
    J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, New York, America, 1980).
  • [16]
    A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2004).
  • [17]
    A.E. Giannakopoulos, Elastic and viscoelastic indentation of flat surface by pyramid indenters, J. Mech. Phys. Solids 54, 13051332 (2006).
  • [18]
    G.A.C. Graham, The contact problem in the linear theory of viscoelasticity, Int. J. Eng. Sci. 3, 2746 (1965).
  • [19]
    G.A.C. Graham, The contact problem in the linear theory of viscoelasticity when the time dependent contact area has any number of maxima and minima, Int. J. Eng. Sci. 5, 495514 (1967).
  • [20]
    S. Guessasma, M. Sehaki, D. Lourdin, and A. Bourmaud, Viscoelasticity properties of biopolymer composite material determined using finite element calculation and nanoindentation, Comput. Math. Sci. 44, 371377 (2008).
  • [21]
    S. Hartmann, Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations, Comput. Methods Appl. Mech. Eng. 191, 14391470 (2002).
  • [22]
    S. Hartmann, J. Gibmeier, and B. Scholtes, Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests, Exp. Mech. 46, 518 (2006).
  • [23]
    P. Haupt, Continuum Mechanics and Theory of Materials (Springer, Berlin, 2000).
  • [24]
    J.L. Hay, M.E.O. Hern, and W.C. Oliver, The importance of contact radius for substrate-independent properties measurement of thin films, Mat. Res. Soc. Symp. Proc. 522, 2732 (1998).
  • [25]
    G.A. Holzapfel, On large strain viscoelasticity: Continuum formulation and finite element applications to elastomeric structures Int. J. Numer. Methods Eng. 39, 39033926 (1996).
  • [26]
    G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (John Wiley & Sons Ltd, UK, 2001).
  • [27]
    G.A. Holzapfel and J.C. Simo, A new viscoelastic constitutive model for continuous media at finite thermomechanical changes, Int. J. Solids Struct. 33, 30193034 (1996).
  • [28]
    G. Huang and H. Lu, Measurement of two independent viscoelastic functions by nanoindentation, Exp. Mech. 47, 8798 (2007).
  • [29]
    N. Huber, W.D. Nix, and H. Gao, Identification of elastic-plastic material parameters from pyramidal indentation of thin films, Proc. R. Soc. Lond. A 458, 15931620 (2002).
  • [30]
    N. Huber and C. Tsakmakis, Finite deformation viscoelasticity laws, Mech. Mater. 32, 118 (2000).
  • [31]
    N. Huber and E. Tyulyukovskiy, A new loading history for identification of viscoplastic properties by spherical indentation, J. Mater. Res. 19, 101113 (2004).
  • [32]
    S.A. Hutcheson and G.B. McKenna, Nanosphere embedding into polymer surfaces: A viscoelastic contact mechanics analysis, Phys. Rev. Lett. 94, 4 (2005).
  • [33]
    A. Jäger and R. Lackner, Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account, Meccanica 42, 293306 (2007).
  • [34]
    M. Johlitz, H. Steeb, S. Diebels, A. Chatzouridou, J. Batal, and W. Possart, Experimental and theoretical investigation of nonlinear viscoelastic polyurethane systems, J. Mater. Sci. 42, 98949904 (2007).
  • [35]
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).
  • [36]
    M. Kaliske and H. Rothert, Formulation and implementation of three-dimensional viscoelasticity at small and finite strains, Comput. Mech. 19, 228239 (1997).
  • [37]
    D. Klötzer, C. Ullner, E. Tyulyukovskiy, and N. Huber, Identification of viscoplastic material parameters from spherical indentation data. Part II: Experimental validation of the method, J. Mater. Res. 21, 677684 (2006).
  • [38]
    M.V.R. Kumar and R. Narasimhan, Analysis of spherical indentation of linear viscoelastic materials, Curr. Sci. 87, 10881095 (2004).
  • [39]
    E.H. Lee and J.R.M. Radok, The contact problem for viscoelastic bodies, J. Appl. Mech. 30, 438444 (1960).
  • [40]
    M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Mech. Mater. 42, 278286 (1998).
  • [41]
    A. Lion, A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation, Contin. Mech. Thermodyn. 8, 153169 (1996).
  • [42]
    A. Lion, Thixotropic behaviour of rubber under dynamic loading histories: Experiments and theory, J. Mech. Phys. Solids 46, 895930 (1998).
  • [43]
    C.K. Liu and S. Lee, Load-displacement relations for nanoindentation of viscoelastic material, J. Appl. Phys. 100, 503512 (2006).
  • [44]
    H.B. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan, Measurement of creep compliance of solid polymers by nanoindentation, Mech. Time-Depend. Mater. 7, 189207 (2003).
  • [45]
    J. Lubliner, A model of rubber viscoelasticity, Mech. Res. Commun. 12, 9399 (1985).
  • [46]
    J. Nocedal and S.J. Wright, Numerical Optimization (Springer, New York, 1999).
  • [47]
    W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 15641583 (1992).
  • [48]
    W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advance in understanding and refinements to methodology, J. Mater. Res. 19, 320 (2004).
  • [49]
    M.L. Oyen, Analytical techniques for indentation of viscoelactic materials, Philos. Mag. 86, 56255641 (2006).
  • [50]
    M.L. Oyen, Sensitivity of polymer nanoindentation creep measurements to experimental variables, Acta Mater. 55, 36333639 (2007).
  • [51]
    G. Rauchs, Optimization-based material parameter identification in indentation testing for finite strain elasto-plasticity, Z. Angew. Math. Mech. 86, 539562 (2006).
  • [52]
    G. Rauchs and j. Bardon, Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization, Fin. Elem. Anal. Design 47, 653667 (2011).
  • [53]
    G. Rauchs, J. Bardon, and D. Georges, Identification of the material parameters of a viscous hyperelastic constitutive law from spherical indentation tests of rubber and validation by tensile tests, Mech. Mater. 42, 961973 (2010).
  • [54]
    S. Reese and S. Govindjee, A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct. 35, 34553482 (1997).
  • [55]
    J.S. Bergström and M.C. Boyce, Constitutive modelling of the large strain time-dependent behavior of elastomers, J. Mech. Phys. Solids 46, 931954 (1998).
  • [56]
    F.R. Schwarzl, Numerical calculation of storage and loss modulus from stress relaxation data for linear viscoelastic materials, Rheol. Acta 10, 165173 (1971).
  • [57]
    H.P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995).
  • [58]
    K. Sedlan, Viskoelastisches Materialverhalten von Elstomerwerkstoffen: Experimentelle Untersuchung und Modellbildung (Dissertation, Universität Gesamthochschule Kassel, 2000).
  • [59]
    T.C.T. Ting, The contact stresses between a rigid indenter and a viscoelastic half-space, J. Appl. Mech. 33, 845854 (1966).
  • [60]
    T.C.T. Ting, Contact problems in the linear theory of viscoelasticity, J. Appl. Mech. 35, 248254 (1968).
  • [61]
    A.V. Tobolsky, Stress relaxation studies of the viscoelastic properties of polymers, J. Appl. Phys. 27, 673685 (1956).
  • [62]
    D. Tranchida and S. Piccarolo, On the use of the nanoindentation unloading curve to measure the Young's modulus of polymers on a nanometer scale, Macromol. Rapid Commun. 26, 18801804 (2005).
  • [63]
    D. Tranchida, S. Piccarolo, J. Loos, and A. Alexee, Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity, Macromolecules 40, 12591267 (2007).
  • [64]
    E. Tyulyukovskiy and N. Huber, Identification of viscoplastic material parameters from spherical indentation data. Part I: Neural networks, J. Mater. Res. 21, 664676 (2006).
  • [65]
    M.R. Vanlandingham and N.K. Chang, Viscoelastic characterization of polymers using instrument indentation. Quasi-static testing, J. Polym. Sci., Part B, Polym. Phys. 43, 17941811 (2005).
  • [66]
    H.F. Wang and H. Bangert, Three-dimensional finite element simulation of vickers indentation on coated systems, Mater. Sci. Eng. A 163(1), 4350 (1993).
  • [67]
    P. Wriggers, Computational Contact Mechanics (Springer-Verlag, Berlin, Heidelberg, Netherlands, 2006).