SEARCH

SEARCH BY CITATION

References

  • [1]
    N. Albin, S. Conti, and G. Dolzmann, Infinite-order laminates in a model in crystal plasticity, Proc. R. Soc. Edinburgh A 139, 685708 (2009).
  • [2]
    J.M. Ball and R.D. James, Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal. 100, 1352 (1987).
  • [3]
    J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. Lond. A 338, 389450 (1992).
  • [4]
    J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63, 337403 (1976/77).
  • [5]
    J.M. Ball, B. Kirchheim, and J. Kristensen, Regularity of quasiconvex envelopes, Calc. Var. Partial Differ. Equ. 11, 333359 (2000).
  • [6]
    S. Bartels, Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal. 38, 811820 (2004).
  • [7]
    S. Bartels, Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal. 43, 363385 (2005).
  • [8]
    P. Bladon, E.M. Terentjev, and M. Warner, Transitions and instabilities in liquid-crystal elastomers, Phys. Rev. E 47, R3838 (1993).
  • [9]
    C. Carstensen, Numerical Analysis of Microstructure, Lecture Note 10 (Max Planck Institute for Mathematics in the Sciences, Leipzig, 2001).
  • [10]
    C. Carstensen, S. Conti, and A. Orlando, Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Cont. Mech. Thermod. 20, 275301 (2008).
  • [11]
    C. Carstensen, K. Hackl, and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 458, 299317 (2002).
  • [12]
    P. Cermelli and M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49, 15391568 (2001).
  • [13]
    M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Ration. Mech. Anal. 103, 237277 (1988).
  • [14]
    S. Conti, Relaxation of Single-Slip Single-Crystal Plasticity with Linear Hardening, in: Multiscale Materials Modeling, edited by P. Gumbsch (Fraunhofer IRB, Freiburg, 2006), pp. 30–35.
  • [15]
    S. Conti, A. DeSimone, and G. Dolzmann, Soft elastic response of stretched sheets of nematic elastomers: a numerical study, J. Mech. Phys. Solids 50, 14311451 (2002).
  • [16]
    S. Conti, A. DeSimone, and G. Dolzmann, Semisoft elasticity and director reorientation in stretched sheets of nematic elastomers, Phys. Rev. E 66, 061710 (2002).
  • [17]
    S. Conti, G. Dolzmann, and C. Klust, Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. A 465, 17351742 (2009).
  • [18]
    S. Conti, G. Dolzmann, and C. Klust, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal. 43, 23372353 (2011).
  • [19]
    S. Conti, G. Dolzmann, and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems, to appear in Math. Models. Methods Appl. Sci. (2013).
  • [20]
    S. Conti, G. Dolzmann, and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in W-1,1, C.R. Acad, Sci. Paris, Math. 349, 175178 (2011).
  • [21]
    S. Conti and F. Theil, Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal. 178, 125148 (2005).
  • [22]
    B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, in: Lecture Notes in Mathematics, Vol. 922 (Springer-Verlag, Berlin, 1982).
  • [23]
    B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, Vol. 78 (Springer-Verlag, Berlin, 1989).
  • [24]
    A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies, Arch. Ration. Mech. Anal. 161, 181204 (2002).
  • [25]
    G. Dolzmann, Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal. 36, 16211635 (1999).
  • [26]
    L. Golubović and T.C. Lubensky, Nonlinear elasticity of amorphous solids, Phys. Rev. Lett. 63, 10821085 (1989).
  • [27]
    R.V. Kohn and S. Müller, Branching of twins near an austenite-twinned martensite interface, Philos. Mag. A 66, 697715 (1992).
  • [28]
    R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Commun. Pure Appl. Math. 47, 405435 (1994).
  • [29]
    J. Kratochvil, Finite-strain theory of crystalline elastic-inelastic materials, J. Appl. Phys. 42, 11041108 (1971).
  • [30]
    I. Kundler and H. Finkelmann, Strain-induced director reorientation in nematic liquid single crystal elastomers, Macromol. Chem. Rapid Commun. 16, 679686 (1995).
  • [31]
    J. Küpfer and H. Finkelmann, Nematic liquid single crystal elastomers, Macromol. Chem. Rapid Communications 12, 717726 (1991).
  • [32]
    E.H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech. 36, 16 (1969).
  • [33]
    E.H. Lee and D.T. Liu, Finite strain elastic plastic theory with application to plane wave analysis, J. Appl. Phys. 38, 1927 (1967).
  • [34]
    A. Mielke and S. Müller, Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity, Z. Angew. Math. Mech. (ZAMM) 86, 233250 (2006).
  • [35]
    C.B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 2553 (1952).
  • [36]
    C.B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band 130 (Springer-Verlag, New York, 1966).
  • [37]
    S. Müller, Variational Models for Microstructure and Phase Transitions, in: Calculus of Variations and Geometric Evolution Problems, in: Springer Lecture Notes in Math. Vol. 1713, edited by F. Bethuel et al. (Springer-Verlag, Berlin, Heidelberg) pp. 85–210.
  • [38]
    F. Murat, Compacité par compensation, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5, 489507 (1978).
  • [39]
    F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8, 69102 (1981).
  • [40]
    M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47, 397462 (1999).
  • [41]
    J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity, J. Mech. Phys. Solids 19, 433455 (1971).
  • [42]
    M. Šilhavý, Ideally soft nematic elastomers, Netw. Heterog. Media 2, 279311 (2007).
  • [43]
    L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39, 136212 (1979).
  • [44]
    G.C. Verwey, M. Warner, and E.M. Terenjev, Elastic instability and stripe domains in liquid crystalline elastomers, J. Phys. II (France) 6, 1273 (1996).
  • [45]
    M. Warner and E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, Oxford, 2003).
  • [46]
    L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Foreword by Wendell H. Fleming (W. B. Saunders Co., Philadelphia, 1969).