SEARCH

SEARCH BY CITATION

References

  • [1]
    R. Abeyaratne and J.K. Knowles, Kinetic relations and the propagation of phase boundaries in solids, Arch. Ration. Mech. Anal. 114, 119154 (1991).
  • [2]
    R. Abeyaratne and J.K. Knowles, Evolution of Phase Transitions. A Continuum Theory (Cambridge University Press, 2006).
  • [3]
    E. Aifantis, Update on a class of gradient theories, Mech. Mater. 35(3–6), 259280 (2003).
  • [4]
    A. Berezovski, J. Engelbrecht, and G.A. Maugin, Numerical Simulation of Waves and Fronts in Inhomogeneous Solids (World Scientific, New Jersey, 2008).
  • [5]
    M. Berveiller and F.D. Fischer (eds.), Mechanics of Solids with Phase Changes, CISM Cources and Lectures No 368 (Springer, Wien, 1997).
  • [6]
    K. Bhattacharya, Phase boundary propagation in a heterogeneous body, Proc. R. Soc. Lond. A 455, 757766 (1999).
  • [7]
    K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect (Oxford University Press, Oxford, 2003).
  • [8]
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res. 32(1), 163194 (2002).
  • [9]
    V. Bongiorno, L.E. Scriven, and H.T. Davis, Molecular theory of fluid interfaces, J. Colloid Interface Sci. 57(3), 462475 (1976).
  • [10]
    H. Brenner, Navier–Stokes revisited, Physica A, Statist. Mech. Appl. 349(1–2), 60132 (2005).
  • [11]
    J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258 (1958).
  • [12]
    J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys. 31, 688 (1959).
  • [13]
    A. Carcaterra and A. Akay, Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems, J. Acoust. Soc. Am. 121(4), 19711982 (2007).
  • [14]
    A. Carcaterra and A. Akay, Dissipation in a finite-size bath, Phys. Rev. E 84(1), 011121 (2011).
  • [15]
    P. Casal, La capillarité interne, Cah. Groupe Fr. Rheol. (France) 3, 3137 (1961).
  • [16]
    P. Casal, La théorie du second gradient et la capillarité, C.R. Acad. Sci. 274, 15711574 (1972).
  • [17]
    P. Casal and H. Gouin, Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité, C.R. Seances Acad. Sci. II, Mech.-Phys. Chim. Sci. Universe Terre Sci. 300(7), 231234 (1985).
  • [18]
    P. Casal and H. Gouin, Equations du mouvement des fluides thermocapillaires, C.R. Acad. Sci. 306(2), 99104 (1988).
  • [19]
    P. Casal and H. Gouin, A representation of liquid-vapour interfaces by using fluids of second grade, Ann. Phys. Suppl. 13(3), 312 (1988).
  • [20]
    P. Casal and H. Gouin, Vibrations of liquid drops in film boiling phenomena, Int. J. Eng. Sci. 32(10), 15531560 (1994).
  • [21]
    L.Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32(1), 113140 (2002).
  • [22]
    P.G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003).
  • [23]
    P. De Gennes, Some effects of long range forces on interfacial phenomena, J. Phys. Lett. 42(16), 377379 (1981).
  • [24]
    R. dell'Erba, F. dell'Isola, and G. Rotoli, The influence of the curvature dependence of the surface tension on the geometry of electrically charged menisci, Contin. Mech. Thermodyn. 11(2), 89105 (1999).
  • [25]
    F. dell'Isola, Linear growth of a liquid droplet divided from its vapour by a “soap bubble”-like fluid interface, Int. J. Eng. Sci. 27(9), 10531067 (1989).
  • [26]
    F. dell'Isola, H. Gouin, and G. Rotoli, Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations, Eur. J. Mech. B, Fluids 15(4), 545568 (1996).
  • [27]
    F. dell'Isola, H. Gouin, P. Seppecher, et al., Radius and surface tension of microscopic bubbles by second gradient theory, C.R. Acad. Sci. II B, Mec. Phys. Chim. Astron. 320, 211216 (1995).
  • [28]
    F. dell'Isola and D. Iannece, On phase transition in classical fluid mixtures with surface adsorption, Int. J. Eng. Sci. 27(9), 10691078 (1989).
  • [29]
    F. dell'Isola and W. Kosiński, Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers, Arch. Mech. 45(3), 333359 (1993).
  • [30]
    F. dell'Isola, A. Madeo, and L. Placidi, Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua, Z. Angew. Math. Mech. 92(1), 5271 (2012).
  • [31]
    F. dell'Isola, A. Madeo, and P. Seppecher, Boundary conditions at fluid-permeable interfaces in porous media: A variational approach, Int. J. Solids Struct. 46(17), 31503164 (2009).
  • [32]
    F. dell'Isola and A. Romano, On a general balance law for continua with an interface, Ric. Mat. 35, 325337 (1986).
  • [33]
    F. dell'Isola and A. Romano, On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface, Int. J. Eng. Sci. 25(11), 14591468 (1987).
  • [34]
    F. dell'Isola and A. Romano, A phenomenological approach to phase transition in classical field theory, Int. J. Eng. Sci. 25(11), 14691475 (1987).
  • [35]
    F. dell'Isola and G. Rotoli, Validity of laplace formula and dependence of surface tension on curvature in second gradient fluids, Mech. Res. Commun. 22, 485490 (1995).
  • [36]
    F. dell'Isola and P. Seppecher, The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power, C.R. Acad. Sci. II 321(8), 303308 (1995).
  • [37]
    F. dell'Isola and P. Seppecher, Edge contact forces and quasi-balanced power, Meccanica 32(1), 3352 (1997).
  • [38]
    F. dell'Isola, P. Seppecher, and A. Madeo, How contact interactions may depend on the shape of cauchy cuts in nth gradient continua: approach “à la d'Alembert”, Z. Angew. Math. Phys. 63, 11191141 (2012).
  • [39]
    F. dell'Isola and S. Vidoli, Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping, Arch. Appl. Mech. 68(1), 119 (1998).
  • [40]
    F. dell'Isola and S. Vidoli, Damping of bending waves in truss beams by electrical transmission lines with pzt actuators, Arch. Appl. Mech. 68(9), 626636 (1998).
  • [41]
    A. Di Egidio, A. Luongo, and A. Paolone, Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams, Int. J. Non-Linear Mech. 42(1), 8898 (2007).
  • [42]
    J.E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal. 88(2), 95133 (1985).
  • [43]
    H. Emmerich, Advances of and by phase-field modelling in condensed-matter physics, Adv. Phys. 57(1), 187 (2008).
  • [44]
    V.A. Eremeev, A.B. Freidin, and L.L. Sharipova, Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies, Dokl. Phys. 48(7), 359363 (2003).
  • [45]
    V.A. Eremeyev and W. Pietraszkiewicz, The nonlinear theory of elastic shells with phase transitions, J. Elast. 74(1), 6786 (2004).
  • [46]
    V.A. Eremeyev and W. Pietraszkiewicz, Phase transitions in thermoelastic and thermoviscoelastic shells, Arch. Mech. 61(1), 4167 (2009).
  • [47]
    V.A. Eremeyev and W. Pietraszkiewicz, Thermomechanics of shells undergoing phase transition, J. Mech. Phys. Solids 59(7), 13951412 (2011).
  • [48]
    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10(1), 116 (1972).
  • [49]
    A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).
  • [50]
    A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10(3), 233248 (1972).
  • [51]
    N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity, Adv. Appl. Mech. 33, 295361 (1997).
  • [52]
    S. Forest, N.M. Cordero, and E.P. Busso, First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales, Comput. Mater. Sci. 50(4), 12991304 (2011).
  • [53]
    A.B. Freidin, Y.B. Fu, L.L. Sharipova, and E.N. Vilchevskaya, Spherically symmetric two-phase deformations and phase transition zones, Int. J. Solids Struct. 43(14-15), 44844508 (2006).
  • [54]
    E. Fried and M.E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal. 182(3), 513554 (2006).
  • [55]
    H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, Mechanism-based strain gradient plasticity–I. Theory, J. Mech. Phys. Solids 47(6), 12391263 (1999).
  • [56]
    R. Gatignol and P. Seppecher, Modelisation of fluid-fluid interfaces with material properties, J. Mec. Theor. Appl. 225247 (1986).
  • [57]
    S.L. Gavrilyuk, Media with equations of state that depend on derivatives, J. Appl. Mech. Tech. Phys. 37(2), 177189 (1996).
  • [58]
    S.L. Gavrilyuk and H. Gouin, Symmetric Form of Governing Equations for Capillary Fluids (Chapman and Hall CRC, Boca Raton, FL, 2000).
  • [59]
    P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus – première partie, théorie du second gradient, J. Mec. 12, 235274 (1973).
  • [60]
    P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J. Appl. Math. 25(3), 556575 (1973).
  • [61]
    I. Giorgio, A. Culla, and D. Del Vescovo, Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network, Arch. Appl. Mech. 79(9), 859879 (2009).
  • [62]
    H. Gouin, Thermodynamic form of the equation of motion for perfect fluids of grade n, C.R. Acad. Sci. II 305, 833838 (1987).
  • [63]
    H. Gouin, Une interprétation moléculaire des fluides thermocapillaires, C.R. Seances Acad. Sci. II, Mech.-Phys. Chim. Sci. Universe Terre Sci. 306(12), 755759 (1988).
  • [64]
    H. Gouin, Utilization of the second gradient theory in continuum mechanics to study motions and thermodynamics of liquid-vapor interfaces, arXiv preprint arXiv:1108.2766 (2011).
  • [65]
    H. Gouin and T. Ruggeri, Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers, Eur. J. Mech. B, Fluids 24(5), 596613 (2005).
  • [66]
    M. Grinfeld, Thermodynamics Methods in the Theory of Heterogeneous Systems (Longman, Harlow, 1991).
  • [67]
    G. Grioli, Elasticita asimmetrica, Ann. Mat. Pura Appl. 50(1), 389417 (1960).
  • [68]
    M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane (Clarendon-Press, Oxford, 1993).
  • [69]
    M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids 50(1), 532 (2002).
  • [70]
    M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Int. J. Eng. Sci. 48(11), 13131324 (2010).
  • [71]
    Y. Huang, H. Gao, W.D. Nix, and J.W. Hutchinson, Mechanism-based strain gradient plasticity–II. Analysis, J. Mech. Phys. Solids 48(1), 99128 (2000).
  • [72]
    A. Karma, Phase field methods, in: Encyclopedia of Materials: Science and Technology (Elsevier, Amsterdam, 2001), pp. 6873–6886.
  • [73]
    N. Kirchner and P. Steinmann, On the material setting of gradient hyperelasticity, Math. Mech. Solids 12(5), 559580 (2007).
  • [74]
    D.J. Korteweg, Sur la forme que prennent les équations des mouvements des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néerlandaises Sciences Exactes et Naturelles II 6, 124 (1901).
  • [75]
    A. Luongo and A. Di Egidio, Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam, Comput. Struct. 84, 15961605 (2006).
  • [76]
    A. Luongo and A. Paolone, Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues, Nonlinear Dyn. 14(3), 193210 (1997).
  • [77]
    A. Luongo and A. Paolone, Multiple scale analysis for divergence-hopf bifurcation of imperfect symmetric systems, J. Sound Vib. 218(3), 527539 (1998).
  • [78]
    A. Luongo, A. Paolone, and A. Di Egidio, Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations, Nonlinear Dyn. 34(3-4), 269291 (2003).
  • [79]
    A. Madeo, I. Djeran-Maigre, G. Rosi, and C. Silvani, The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection, Contin. Mech. Thermodyn. (2012), DOI 10.1007/s00161-012-0236-y.
  • [80]
    G.A. Maugin, On shock waves and phase-transition fronts in continua, ARI Int. J. Phys. Eng. Sci. 50(3), 141150 (1998).
  • [81]
    R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16(1), 5178 (1964).
  • [82]
    R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct. 1(4), 417438 (1965).
  • [83]
    R.D. Mindlin and N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4(1), 109124 (1968).
  • [84]
    R.D. Mindlin and H.F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal. 11(1), 415448 (1962).
  • [85]
    N. Moelans, B. Blanpain, and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Comput. Coupling Phase Diag. Thermochem. – Calphad 32(2), 268294 (2008).
  • [86]
    H.B. Mühlhaus and E.C. Alfantis, A variational principle for gradient plasticity, Int. J. Solids Struct. 28(7), 845857 (1991).
  • [87]
    A.H. Nayfeh, Perturbation Methods (Wiley-VCH, Chichester, 2008).
  • [88]
    W. Pietraszkiewicz, V. Eremeyev, and V. Konopińska, Extended non-linear relations of elastic shells undergoing phase transitions, Z. Angew. Math. Mech. 87(2), 150159 (2007).
  • [89]
    A. Romano, Thermodynamics of Phase Transitions in Classical Field Theory (World Scientific, Singapore, 1993).
  • [90]
    G. Rosi, R. Paccapeli, F. Ollivier, and J. Pouget, Optimization of piezoelectric patches positioning for passive sound radiation control of plates, J. Vib. Control (2012), DOI: 10.1177/1077546312437236.
  • [91]
    G. Rosi, A. Madeo, and J.L. Guyader, Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media, Int. J. Solids Struct. (accepted).
  • [92]
    G. Rosi, J. Pouget, and F. dell'Isola, Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode, Eur. J. Mech. A, Solids 29(5), 859870 (2010).
  • [93]
    J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Dover, New York, 2003).
  • [94]
    G. Sciarra, F. dell'Isola, and O. Coussy, Second gradient poromechanics, Int. J. Solids Struct. 44(20), 66076629 (2007).
  • [95]
    G. Sciarra, F. dell'Isola, and K. Hutter, A solid-fluid mixture model allowing for solid dilatation under external pressure, Contin. Mech. Thermodyn. 13(5), 287306 (2001).
  • [96]
    G. Sciarra, F. dell'Isola, and K. Hutter, Dilatational and compacting behavior around a cylindrical cavern leached out in a solid–fluid elastic rock salt, Int. J. Geomech. 5(3), 233243 (2005).
  • [97]
    G. Sciarra, F. dell'Isola, N. Ianiro, and A. Madeo, A variational deduction of second gradient poroelasticity. Part I: General theory, J. Mech. Mater. Struct. 3(3), 507526 (2008).
  • [98]
    P. Seppecher, Etude d'une modelisation des zones capillaires fluides: interfaces et lignes de contact (PhD thesis, Ecole Nationale Superieure de Techniques Avancees, 1987).
  • [99]
    P. Seppecher, Thermodynamique des zones capillaires, Ann. Phys. 13(3), 1322 (1988).
  • [100]
    P. Seppecher, Etude des conditions aux limites en théorie du second gradient: cas de la capillarité, C.R. Seances Acad. Sci. II, Mech.-Phys. Chim. Sci. Universe Terre Sci. 309(6), 497502 (1989).
  • [101]
    P. Seppecher, Étude des conditions aux limites en théorie du second gradient: cas de la capillarité, C.R. Acad. Sci. 309, 497502 (1989).
  • [102]
    P. Seppecher, Equilibrium of a Cahn-Hilliard fluid on a wall – Influence of the wetting properties of the fluid upon the stability of a thin liquid film, Eur. J. Mech. B, Fluids 12(1), 6984 (1993).
  • [103]
    P. Seppecher, Les Fluides de Cahn-Hilliard, Mémoire d'habilitation à diriger des recherches (Université du Sud, Toulon, 1996).
  • [104]
    P. Seppecher, Moving contact lines in the Cahn-Hilliard theory, Int. J. Eng. Sci. 34(9), 977992 (1996).
  • [105]
    P. Seppecher, Second-Gradient Theory: Application to Cahn-Hilliard Fluids, in: Continuum Thermomechanics: The Art and Science of Modeling Matter's Behaviour, edited by G. A. Maugin et al. (Springer, Dordrecht, 2002), pp. 379–388.
  • [106]
    I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009).
  • [107]
    S. Stupkiewicz, Micromechanics of Contact and Interface Layers, Lecture Notes in Applied and Computational Mechanics, Vol. 30 (Springer, Berlin, 2007).
  • [108]
    R. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal. 17(2), 85112 (1964).
  • [109]
    F. Vestroni, A. Luongo, and A. Paolone, A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system, Nonlinear Dyn. 54(4), 379393 (2008).
  • [110]
    Y. Wang and J. Li, Phase field modeling of defects and deformation, Acta Mater. 58(4), 12121235 (2010).
  • [111]
    V.A. Yeremeyev, A.B. Freidin, and L.L. Sharipova, The stability of the equilibrium of two-phase elastic solids, J. Appl. Math. Mech. 71(1), 6184 (2007).